zy-17617b and glucose-1-6-bisphosphate

zy-17617b has been researched along with glucose-1-6-bisphosphate* in 4 studies

Other Studies

4 other study(ies) available for zy-17617b and glucose-1-6-bisphosphate

ArticleYear
Effects of Ca(2+)-ionophore A23187 and calmodulin antagonists on regulatory mechanisms of glycolysis and cell viability of NIH-3T3 fibroblasts.
    Molecular genetics and metabolism, 1999, Volume: 67, Issue:4

    We studied here, in NIH-3T3 fibroblasts, the effect of the Ca(2+)-ionophore A23187 (which is known to increase intracellular-free Ca(2+)) on the control of glycolysis and cell viability and the action of calmodulin antagonists. Time-response studies with Ca(2+)-ionophore A23187 have revealed dual effects on the distribution of phosphofructokinase (PFK) (EC 2.7.1.11), the rate-limiting enzyme of glycolysis, between the cytoskeletal and cytosolic (soluble) fractions of the cell. A short incubation (maximal effect after 7 min) caused an increase in cytoskeleton-bound PFK with a corresponding decrease in soluble activity. This leads to an enhancement of cytoskeletal glycolysis. A longer incubation with Ca(2+)-ionophore caused a reduction in both cytoskeletal and cytosolic PFK and cell death. Both the "physiological" and "pathological" phases of the Ca(2+)-induced changes in the distribution of PFK were prevented by treatment with three structurally different calmodulin antagonists, thioridazine, an antipsychotic phenothiazine, clotrimazole, from the group of antifungal azole derivatives that were recently recognized as calmodulin antagonists, and CGS 9343B, a more selective inhibitor of calmodulin activity. The longer incubation with Ca(2+)-ionophore also induced a decrease in the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two allosteric stimulatory signal molecules of glycolysis. All these pathological changes preceded the reduction in cell viability, and a strong correlation was found between the fall in ATP and cell death. All three calmodulin antagonists prevented the pathological reduction in the levels of the allosteric effectors, ATP and cell viability. These experiments may throw light on the mechanisms underlying the therapeutic action of calmodulin antagonists that we previously found in treatment of the proliferating melanoma cells, on the one hand, and skin injuries, on the other hand.

    Topics: 3T3 Cells; Adenosine Triphosphate; Animals; Benzimidazoles; Calcimycin; Calcium; Calmodulin; Cell Survival; Clotrimazole; Cytoskeleton; Fructosediphosphates; Glucose-6-Phosphate; Glycolysis; Ionophores; Mice; Phosphofructokinase-1; Solubility; Thioridazine; Time Factors

1999
Insulin stimulates binding of phosphofructokinase to cytoskeleton and increases glucose 1,6-bisphosphate levels in NIH-3T3 fibroblasts, which is prevented by calmodulin antagonists.
    Molecular genetics and metabolism, 1998, Volume: 65, Issue:3

    We report here a novel mechanism of insulin action in cultures of NIH-3T3 fibroblasts. Our experiments revealed that in these cells, insulin induced a rapid and transient increase in cytoskeleton-bound phosphofructokinase (EC 2.7.1.11), the rate-limiting enzyme in glycolysis, with a corresponding decrease in soluble (cytosolic) activity. Insulin also induced a slower increase in the levels of glucose 1,6-bisphosphate, the potent activator of cytosolic glycolysis. Both the rapid and the slower stimulatory actions of insulin were prevented by treatment with structurally different calmodulin antagonists, which strongly suggest that calmodulin is involved in these effects of insulin. The present and our previous experiments in muscle suggest that rapid, Ca2+-calmodulin-mediated increase in the binding of glycolytic enzymes to cytoskeleton, as well as the slower increase in glucose 1,6-bisphosphate, may be a general mechanism, in different cells, in signal transduction of insulin.

    Topics: 3T3 Cells; Animals; Benzimidazoles; Calmodulin; Clotrimazole; Cytoskeleton; Glucose-6-Phosphate; Insulin; Mice; Phosphofructokinase-1; Thioridazine

1998
Calmodulin antagonists decrease glucose 1,6-bisphosphate, fructose 1,6-bisphosphate, ATP and viability of melanoma cells.
    European journal of pharmacology, 1996, Oct-17, Volume: 313, Issue:3

    Glycolysis is known to be the primary energy source in cancer cells. We investigated here the effect of four different calmodulin antagonists: thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), CGS 9343B (1,3-dihydro-1-[1-[(4-methyl-4H,6H-pyrrolo[1,2-a] [4,1]-benzoxazepin-4-yl)methyl]-4-piperidinyl]-2 H-benzimidazol-2-one (1:1) maleate), clotrimazole (1-(alpha-2-chlorotrityl)imidazole) and bifonazole (1-(alpha-biphenyl-4-ylbenzyl)imidazole), on the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two stimulatory signal molecules of glycolysis, and on ATP content and cell viability in B16 melanoma cells. We found that all four substances significantly reduced the levels of glucose 1,6-bisphosphate, fructose 1,6-bisphosphate and ATP, in a dose- and time-dependent manner. Cell viability was reduced in a close correlation with the fall in ATP. The decrease in glucose 1,6-bisphosphate and fructose 1,6-bisphosphate did not result from the cytotoxic effects of the calmodulin antagonists, since their content was already reduced before any cytotoxic effect was observed. These findings suggest that the fall in the levels of the two signal molecules of glycolysis, induced by the calmodulin antagonists, causes a reduction in glycolysis and ATP levels, which eventually leads to cell death. Since cell proliferation was also reported to be inhibited by calmodulin antagonists, these substances are most promising agents in treatment of cancer by inhibiting both cell proliferation and the glycolytic supply of ATP required for cell growth.

    Topics: Adenosine Triphosphate; Animals; Benzimidazoles; Calmodulin; Cell Survival; Clotrimazole; Fructosediphosphates; Glucose; Glucose-6-Phosphate; Imidazoles; Melanoma, Experimental; Mice; Thioridazine; Tumor Cells, Cultured

1996
Sequence of insulin effects on cytoskeletal and cytosolic phosphofructokinase, mitochondrial hexokinase, glucose 1,6-bisphosphate and fructose 2,6-bisphosphate levels, and the antagonistic action of calmodulin inhibitors, in diaphragm muscle.
    The International journal of biochemistry, 1992, Volume: 24, Issue:10

    1. Time-curves of insulin effects on energy-producing systems in different cellular compartments of rat diaphragm muscle have revealed: (a) a rapid (within minutes) and transient stimulatory effect of insulin on cytoskeletal phosphofructokinase and aldolase and mitochondrial hexokinase. (b) A slower and consistent stimulatory effect on glucose 1,6-bisphosphate level, with concomitant gradual activation of cytosolic phosphofructokinase. Fructose 2,6-bisphosphate levels were not changed by insulin. (c) Lactate concentration correlated with the stimulation of cytoskeletal and cytosolic glycolysis. 2. Calmodulin antagonists, trifluoperazine or CGS 9343B, prevented all these effects of insulin. 3. These results suggest that cytoskeletal glycolysis and mitochondrial oxidation are the source of ATP for the rapid actions of insulin, whereas cytosolic glycolysis is the source of ATP for the slow actions of insulin. Calmodulin is involved in all these effects of insulin.

    Topics: Animals; Benzimidazoles; Calmodulin; Cytoskeleton; Cytosol; Diaphragm; Fructosediphosphates; Glucose-6-Phosphate; Glucosephosphates; Glycolysis; Hexokinase; Insulin; Insulin Antagonists; Kinetics; Muscle, Smooth; Phosphofructokinase-1; Rats; Trifluoperazine

1992