zr-777 has been researched along with fenoxycarb* in 2 studies
2 other study(ies) available for zr-777 and fenoxycarb
Article | Year |
---|---|
Bumblebees can be used in combination with juvenile hormone analogues and ecdysone agonists.
This study examined the lethal and sublethal effects on the beneficial insect Bombus terrestris by two classes of insect growth regulators (IGRs) that are commercially used in agriculture to control pest insects. Three juvenile hormones analogues (JHAs) (pyriproxyfen, fenoxycarb and kinoprene) and two ecdysone agonists or moulting accelerating compounds (MACs) (tebufenozide and methoxyfenozide) were tested. The bumblebee workers were exposed to the insecticides via three different routes of exposure: dermally by topical contact, and orally via the drinking sugar water or the pollen. In the first series of experiments the IGRs were applied at their respective maximum field recommended concentration (MFRC). These risk hazard tests showed that the tested IGRs caused no acute toxicity on the workers, and any compound had an adverse effect on reproduction (production of males). In addition, larval development was followed in the treated nests compared with the controls. After application of the two MACs and the JHA fenoxycarb no adverse effects were observed on larval development. However, in the nests where the workers were exposed to the JHAs pyriproxyfen and kinoprene higher numbers of dead larvae were scored. These larvae were third and fourth instars, implying a lethal blockage of development before metamorphosis. In a second test, a series of dilutions was made for kinoprene, and these results revealed that only the MFRC caused a toxic effect on the larval development. On the other hand, kinoprene at lower concentrations (0.0650 mg ai/l) had a stimulatory effect on brood production. It was remarkable that ovaries of such treated dominant workers were longer and contained more eggs than in the controls. In a last experiment, the cuticular uptake was determined for a JHA and MAC to evaluate to what extent worker bees accumulate these classes of IGRs. Cuticular uptake ranged from 34 to 83% at 24 h after topical application. Overall, the obtained results indicate that the tested IGRs at their recommended concentration are safe to be used in combination with B. terrestris. Topics: Animals; Bees; Ecdysone; Fatty Acids, Unsaturated; Female; Hydrazines; Insecticides; Juvenile Hormones; Larva; Male; Ovary; Phenylcarbamates; Pyridines | 2006 |
Production of male neonates in Daphnia magna (Cladocera, Crustacea) exposed to juvenile hormones and their analogs.
We exposed the water flea Daphnia magna (Cladocera, Crustacea) to either juvenile hormone I (JH I), juvenile hormone II (JH II), or the juvenile hormone-mimicking insecticides kinoprene, hydroprene, epofenonane, or fenoxycarb. By 21-day reproduction tests, we investigated the effects on the number of neonates born per female and the offspring sex ratio. All six chemicals induced D. magna to produce male neonates; the male sex ratio of the offspring increased as the chemical concentration increased. EC50 values for production of male neonates were estimated as 400 (JH I), 410 (JH II), 190 (kinoprene), 2.9 (hydroprene), 64 (epofenonane), and 0.92 (fenoxycarb) microg/l. The number of neonates produced was reduced with all chemicals at the concentrations investigated. At the EC50 for male production, five of the six chemicals reduced the reproductive rate to less than 50%; the exception was epofenonane, which caused only a slight reduction in reproductive rate. These results were similar to those obtained for five juvenoids studied previously, one of which was studied here again. There are now 10 chemical substances--all juvenile hormones or their analogs-that are known to induce D. magna to produce male neonates. This suggests that juvenile hormone is involved in initiating male production followed by sexual reproduction in D. magna, and probably in most cladocerans that exhibit cyclic parthenogenesis. Topics: Animals; Animals, Newborn; Daphnia; Fatty Acids, Unsaturated; Female; Insecticides; Juvenile Hormones; Male; Phenylcarbamates; Sex Ratio; Terpenes; Water Pollutants, Chemical | 2005 |