zn(ii)-phthalocyanine has been researched along with 2-dichlorobenzene* in 2 studies
2 other study(ies) available for zn(ii)-phthalocyanine and 2-dichlorobenzene
Article | Year |
---|---|
High-potential perfluorinated phthalocyanine-fullerene dyads for generation of high-energy charge-separated states: formation and photoinduced electron-transfer studies.
High oxidation potential perfluorinated zinc phthalocyanines (ZnF(n)Pcs) are synthesised and their spectroscopic, redox, and light-induced electron-transfer properties investigated systematically by forming donor-acceptor dyads through metal-ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine- (Py) and phenylimidazole-functionalised fullerene (C60Im) derivatives to the zinc centre of the F(n)Pcs. The determined binding constants, K, in o-dichlorobenzene for the 1:1 complexes are in the order of 10(4) to 10(5) M(-1); nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6-31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnF(n)Pc(.+)-C60Im(.-) and ZnF(n)Pc(.+)-C60Py(.-) (n=0, 8 or 16) intra-supramolecular charge-separated states during electron transfer. Electrochemical studies on the ZnPc-C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge-separated states. The energy of the charge-separated state for dyads composed of ZnF(n)Pc is higher than that of normal ZnPc-C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar-energy harvesting and optoelectronic device building applications. Topics: Anions; Cations; Chlorobenzenes; Electrochemistry; Electron Transport; Fullerenes; Indoles; Isoindoles; Kinetics; Ligands; Light; Organometallic Compounds; Oxidation-Reduction; Photochemistry; Pyridines; Spectrum Analysis; Toluene; Zinc; Zinc Compounds | 2014 |
Ultrafast singlet-singlet energy transfer in self-assembled via metal-ligand axial coordination of free-base porphyrin-zinc phthalocyanine and free-base porphyrin-zinc naphthalocyanine dyads.
Singlet-singlet energy transfer in self-assembled via axial coordination of imidazole-appended (at different positions of one of the meso-phenyl entities) free-base tetraphenylporphyrin, H(2)PIm, to either zinc phthalocyanine, ZnPc, or zinc naphthalocyanine, ZnNc, dyads is investigated in noncoordinating solvents, o-dichlorobenzene and toluene, using both steady-state and time-resolved transient absorption techniques. The newly formed supramolecular dyads were fully characterized by spectroscopic, computational, and electrochemical methods. The binding constants measured from optical absorption spectral data were found to be in the range of 10(4)-10(5) M(-1) for the 1:1 dyads, suggesting fairly stable complex formation. Electrochemical and computational studies suggested that photoinduced electron transfer is a thermodynamically unfavorable process when free-base porphyrin is excited in these dyads. Selective excitation of the donor free-base porphyrin entity was possible in both types of dyads formed by either of the ZnPc or ZnNc energy acceptors. Efficient singlet-singlet energy transfer was observed in these dyads, and the position of imidazole linkage on the free-base porphyrin entity, although flexible, seems to have some control over the overall efficiency of excited energy transfer process. Kinetics of energy transfer was monitored by performing transient absorption measurements using both up-conversion and pump-probe techniques. Such studies revealed ultrafast singlet-singlet energy transfer in the studied dyads with time constants on the order of 2-25 ps depending upon the type of the dyad. Topics: Chlorobenzenes; Energy Transfer; Fluorescent Dyes; Indoles; Isoindoles; Kinetics; Ligands; Molecular Structure; Organometallic Compounds; Porphyrins; Toluene; Zinc Compounds | 2010 |