zithromax has been researched along with 1-2-oleoylphosphatidylcholine* in 3 studies
3 other study(ies) available for zithromax and 1-2-oleoylphosphatidylcholine
Article | Year |
---|---|
Decrease of elastic moduli of DOPC bilayers induced by a macrolide antibiotic, azithromycin.
The elastic properties of membrane bilayers are key parameters that control its deformation and can be affected by pharmacological agents. Our previous atomic force microscopy studies revealed that the macrolide antibiotic, azithromycin, leads to erosion of DPPC domains in a fluid DOPC matrix [A. Berquand, M. P. Mingeot-Leclercq, Y. F. Dufrene, Real-time imaging of drug-membrane interactions by atomic force microscopy, Biochim. Biophys. Acta 1664 (2004) 198-205.]. Since this observation could be due to an effect on DOPC cohesion, we investigated the effect of azithromycin on elastic properties of DOPC giant unilamellar vesicles (GUVs). Microcinematographic and morphometric analyses revealed that azithromycin addition enhanced lipid membranes fluctuations, leading to eventual disruption of the largest GUVs. These effects were related to change of elastic moduli of DOPC, quantified by the micropipette aspiration technique. Azithromycin decreased both the bending modulus (k(c), from 23.1+/-3.5 to 10.6+/-4.5 k(B)T) and the apparent area compressibility modulus (K(app), from 176+/-35 to 113+/-25 mN/m). These data suggested that insertion of azithromycin into the DOPC bilayer reduced the requirement level of both the energy for thermal fluctuations and the stress to stretch the bilayer. Computer modeling of azithromycin interaction with DOPC bilayer, based on minimal energy, independently predicted that azithromycin (i) inserts at the interface of phospholipid bilayers, (ii) decreases the energy of interaction between DOPC molecules, and (iii) increases the mean surface occupied by each phospholipid molecule. We conclude that azithromycin inserts into the DOPC lipid bilayer, so as to decrease its cohesion and to facilitate the merging of DPPC into the DOPC fluid matrix, as observed by atomic force microscopy. These investigations, based on three complementary approaches, provide the first biophysical evidence for the ability of an amphiphilic antibiotic to alter lipid elastic moduli. This may be an important determinant for drug: lipid interactions and cellular pharmacology. Topics: Azithromycin; Elasticity; Lipid Bilayers; Phosphatidylcholines; Unilamellar Liposomes | 2007 |
Effect of the antibiotic azithromycin on thermotropic behavior of DOPC or DPPC bilayers.
Azithromycin is a macrolide antibiotic known to bind to lipids and to affect endocytosis probably by interacting with lipid membranes [Tyteca, D., Schanck, A., Dufrene, Y.F., Deleu, M., Courtoy, P.J., Tulkens, P.M., Mingeot-Leclercq, M.P., 2003. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: studies on Langmuir-Blodgett monolayers, liposomes and J774 macrophages. J. Membr. Biol. 192, 203-215]. In this work, we investigate the effect of azithromycin on lipid model membranes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Thermal transitions of both lipids in contact with azithromycin are studied by (31)P NMR and DSC on multilamellar vesicles. Concerning the DPPC, azithromycin induces a suppression of the pretransition whereas a phase separation between the DOPC and the antibiotic is observed. For both lipids, the enthalpy associated with the phase transition is strongly decreased with azithromycin. Such effects may be due to an increase of the available space between hydrophobic chains after insertion of azithromycin in lipids. The findings provide a molecular insight of the phase merging of DPPC gel in DOPC fluid matrix induced by azithromycin [Berquand, A., Mingeot-Leclercq, M.P., Dufrene, Y.F., 2004. Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim. Biophys. Acta 1664, 198-205] and could help to a better understanding of azithromycin-cell interaction. Topics: Anti-Bacterial Agents; Azithromycin; Calorimetry, Differential Scanning; Lipid Bilayers; Magnetic Resonance Spectroscopy; Phase Transition; Phosphatidylcholines; Phosphorus Radioisotopes; Phosphorylcholine; Spectrophotometry, Infrared; Temperature | 2006 |
Real-time imaging of drug-membrane interactions by atomic force microscopy.
Understanding drug-biomembrane interactions at high resolution is a key issue in current biophysical and pharmaceutical research. Here we used real-time atomic force microscopy (AFM) imaging to visualize the interaction of the antibiotic azithromycin with lipid domains in model biomembranes. Various supported lipid bilayers were prepared by fusion of unilamellar vesicles on mica and imaged in buffer solution. Phase-separation was observed in the form of domains made of dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), or SM/cholesterol (SM/Chl) surrounded by a fluid matrix of dioleoylphosphatidylcholine (DOPC). Time-lapse images collected following addition of 1 mM azithromycin revealed progressive erosion and disappearance of DPPC gel domains within 60 min. We attribute this effect to the disruption of the tight molecular packing of the DPPC molecules by the drug, in agreement with earlier biophysical experiments. By contrast, SM and SM-Chl domains were not modified by azithromycin. We suggest that the higher membrane stability of SM-containing domains results from stronger intermolecular interactions between SM molecules. This work provides direct evidence that the perturbation of lipid domains by azithromycin strongly depends on the lipid nature and opens the door for developing new applications in membrane biophysics and pharmacology. Topics: Androstanes; Azithromycin; Cell Membrane; Lipid Bilayers; Microscopy, Atomic Force; Phosphatidylcholines | 2004 |