zaprinast has been researched along with ibudilast* in 2 studies
2 other study(ies) available for zaprinast and ibudilast
Article | Year |
---|---|
Relaxation and potentiation of cGMP-mediated response by ibudilast in bovine tracheal smooth muscle.
The effects of ibudilast, an inhibitor of phosphodiesterases (PDEs), on tension, levels of guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) were investigated in bovine tracheal smooth muscle. We especially examined the combined effect of ibudilast with the cGMP-elevating agents on these parameters. Ibudilast was equipotent to attenuate the precontractions induced by both 0.3 microM methacholine and 40 mM K(+). By contrast, the relaxant effects of sodium nitroprusside and salbutamol on 40 mM K(+)-contracted preparations were smaller than those on 0.3 microM methacholine-contracted ones. Neither N(omega)-nitro-L-arginine (100 microM), an inhibitor of nitric oxide synthase, nor ODQ (1 H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; 5 microM), an inhibitor of soluble guanylyl cyclase, affected the ibudilast-induced relaxation. The relaxations induced by ibudilast and diltiazem on 40 mM K(+)-contracted preparations were significantly attenuated when extracellular CaCl(2) was increased from 2.54 mM to 10 mM. Ibudilast (10 microM), which caused only minor effect by itself, significantly ( P<0.05) shifted the concentration-response curves for the relaxant responses to sodium nitroprusside (SNP), atrial natriuretic peptide (ANP) and salbutamol to the left. On the other hand, ibudilast did not change the relaxant responses to diltiazem. Unlike ibudilast, diltiazem (3 microM) failed to affect the SNP- and salbutamol-induced relaxations. Ibudilast significantly ( P<0.05) increased basal levels of cGMP and cAMP. Furthermore, ibudilast enhanced SNP (0.3 microM)- and ANP (0.3 microM)-induced cGMP accumulation and salbutamol (10 nM)-induced cAMP accumulation. Zaprinast (10 microM), a type 5 PDE inhibitor, enhanced both relaxation and cGMP accumulation induced by SNP and ANP without changing salbutamol-induced responses. These findings suggest that blockade of voltage-gated Ca(2+) channels is involved in the relaxing action of ibudilast in bovine tracheal smooth muscle. However, ibudilast potentiates relaxation responses to ANP and SNP by inhibition of PDE 5, not by blockade of Ca(2+) channels. The enhancement of cGMP-mediated response may contribute to the therapeutic effects of ibudilast. Topics: Albuterol; Analysis of Variance; Animals; Atrial Natriuretic Factor; Bronchodilator Agents; Cattle; Cyclic GMP; Dose-Response Relationship, Drug; In Vitro Techniques; Muscle Contraction; Muscle Relaxation; Muscle, Smooth; Nitric Oxide Donors; Nitroprusside; Phosphodiesterase Inhibitors; Purinones; Pyridines; Trachea | 2002 |
Ibudilast attenuates astrocyte apoptosis via cyclic GMP signalling pathway in an in vitro reperfusion model.
We examined the effect of 3-isobutyryl-2-isopropylpyrazolo[1,5-a]pyridine (ibudilast), which has been clinically used for bronchial asthma and cerebrovascular disorders, on cell viability induced in a model of reperfusion injury. Ibudilast at 10 - 100 microM significantly attenuated the H(2)O(2)-induced decrease in cell viability. Ibudilast inhibited the H(2)O(2)-induced cytochrome c release, caspase-3 activation, DNA ladder formation and nuclear condensation, suggesting its anti-apoptotic effect. Phosphodiesterase inhibitors such as theophylline, pentoxyfylline, vinpocetine, dipyridamole and zaprinast, which increased the guanosine-3',5'-cyclic monophosphate (cyclic GMP) level, and dibutyryl cyclic GMP attenuated the H(2)O(2)-induced injury in astrocytes. Ibudilast increased the cyclic GMP level in astrocytes. The cyclic GMP-dependent protein kinase inhibitor KT5823 blocked the protective effects of ibudilast and dipyridamole on the H(2)O(2)-induced decrease in cell viability, while the cyclic AMP-dependent protein kinase inhibitor KT5720, the cyclic AMP antagonist Rp-cyclic AMPS, the mitogen-activated protein/extracellular signal-regulated kinase inhibitor PD98059 and the leukotriene D(4) antagonist LY 171883 did not. KT5823 also blocked the effect of ibudilast on the H(2)O(2)-induced cytochrome c release and caspase-3-like protease activation. These findings suggest that ibudilast prevents the H(2)O(2)-induced delayed apoptosis of astrocytes via a cyclic GMP, but not cyclic AMP, signalling pathway. Topics: Alkaloids; Animals; Animals, Newborn; Apoptosis; Astrocytes; Carbazoles; Cell Survival; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cytochrome c Group; Dipyridamole; DNA; Dose-Response Relationship, Drug; Enzyme Inhibitors; Hydrogen Peroxide; Indoles; Mitochondria; Pentoxifylline; Peptide Hydrolases; Phosphodiesterase Inhibitors; Purinones; Pyridines; Rats; Rats, Wistar; Reperfusion Injury; Signal Transduction; Theophylline; Vinca Alkaloids | 2001 |