yessotoxin has been researched along with palytoxin* in 3 studies
2 review(s) available for yessotoxin and palytoxin
Article | Year |
---|---|
Targets and effects of yessotoxin, okadaic acid and palytoxin: a differential review.
In this review, we focus on processes, organs and systems targeted by the marine toxins yessotoxin (YTX), okadaic acid (OA) and palytoxin (PTX). The effects of YTX and their basis are analyzed from data collected in the mollusc Mytilus galloprovincialis, the annelid Enchytraeus crypticus, Swiss CD1 mice and invertebrate and vertebrate cell cultures. OA and PTX, two toxins with a better established mode of action, are analyzed with regard to their effects on development. The amphibian Xenopus laevis is used as a model, and the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) as the experimental protocol. Topics: Acrylamides; Animals; Annelida; Cell Line; Cnidarian Venoms; Embryo, Nonmammalian; Immune System; Mice; Mollusk Venoms; Mytilus; Okadaic Acid; Oxocins; Xenopus laevis | 2010 |
Neurotoxins from marine dinoflagellates: a brief review.
Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP) and azaspiracid shellfish poisoning (ASP). Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels. Topics: Acrylamides; Animals; Ciguatera Poisoning; Cnidarian Venoms; Dinoflagellida; Humans; Ion Channel Gating; Ion Channels; Marine Toxins; Mollusk Venoms; Neurotoxicity Syndromes; Neurotoxins; Oxocins; Paralysis; Shellfish Poisoning; Spiro Compounds | 2008 |
1 other study(ies) available for yessotoxin and palytoxin
Article | Year |
---|---|
Marine toxins and the cytoskeleton.
Topics: Acrylamides; Animals; Cnidarian Venoms; Cytoskeleton; Diarrhea; Humans; Marine Toxins; Mollusk Venoms; Okadaic Acid; Oxocins; Saxitoxin; Sodium-Potassium-Exchanging ATPase | 2008 |