xestospongin-d has been researched along with 2-aminoethoxydiphenyl-borate* in 4 studies
4 other study(ies) available for xestospongin-d and 2-aminoethoxydiphenyl-borate
Article | Year |
---|---|
Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor.
Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca(2+) channels. Interactions of the commonly used antagonists of IP3Rs with IP3R subtypes are poorly understood.. IP3-evoked Ca(2+) release from permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R was measured using a luminal Ca(2+) indicator. The effects of commonly used antagonists on IP3-evoked Ca(2+) release and (3) H-IP3 binding were characterized.. Functional analyses showed that heparin was a competitive antagonist of all IP3R subtypes with different affinities for each (IP3R3 > IP3R1 ≥ IP3R2). This sequence did not match the affinities for heparin binding to the isolated N-terminal from each IP3R subtype. 2-aminoethoxydiphenyl borate (2-APB) and high concentrations of caffeine selectively inhibited IP3R1 without affecting IP3 binding. Neither Xestospongin C nor Xestospongin D effectively inhibited IP3-evoked Ca(2+) release via any IP3R subtype.. Heparin competes with IP3, but its access to the IP3-binding core is substantially hindered by additional IP3R residues. These interactions may contribute to its modest selectivity for IP3R3. Practicable concentrations of caffeine and 2-APB inhibit only IP3R1. Xestospongins do not appear to be effective antagonists of IP3Rs. Topics: Animals; Boron Compounds; Caffeine; Calcium; Cell Line; Chickens; Heparin; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Oxazoles | 2014 |
Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles.
We tested the hypothesis that vasomotor control is differentially regulated between feed arteries and downstream arterioles from the cremaster muscle of C57BL/6 mice. In isolated pressurized arteries, confocal Ca(2+) imaging of smooth muscle cells (SMCs) revealed Ca(2+) sparks and Ca(2+) waves. Ryanodine receptor (RyR) antagonists (ryanodine and tetracaine) inhibited both sparks and waves but increased global Ca(2+) and myogenic tone. In arterioles, SMCs exhibited only Ca(2+) waves that were insensitive to ryanodine or tetracaine. Pharmacological interventions indicated that RyRs are functionally coupled to large-conductance, Ca(2+)-activated K(+) channels (BK(Ca)) in SMCs of arteries, whereas BK(Ca) appear functionally coupled to voltage-gated Ca2+ channels in SMCs of arterioles. Inositol 1,4,5-trisphosphate receptor (IP3R) antagonists (xestospongin D or 2-aminoethoxydiphenyl borate) or a phospholipase C inhibitor (U73122) attenuated Ca(2+) waves, global Ca(2+) and myogenic tone in arteries and arterioles but had no effect on arterial sparks. Real-time PCR of isolated SMCs revealed RyR2 as the most abundant isoform transcript; arteries expressed twice the RyR2 but only 65% the RyR3 of arterioles and neither vessel expressed RyR1. Immunofluorescent localisation of RyR protein indicated bright, clustered staining of arterial SMCs in contrast to diffuse staining in arteriolar SMCs. Expression of IP(3)R transcripts and protein immunofluorescence were similar in SMCs of both vessels with IP(3)R1>>IP(3)R2>IP(3)R3. Despite similar expression of IP(3)Rs and dependence of Ca(2+) waves on IP(3)Rs, these data illustrate pronounced regional heterogeneity in function and expression of RyRs between SMCs of the same vascular resistance network. We conclude that vasomotor control is differentially regulated in feed arteries vs. downstream arterioles. Topics: Animals; Arteries; Arterioles; Boron Compounds; Calcium; Calcium Channels; Calcium Signaling; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Male; Mice; Mice, Inbred C57BL; Muscle Development; Myocytes, Smooth Muscle; Oxazoles; Potassium Channels, Calcium-Activated; Ryanodine; Ryanodine Receptor Calcium Release Channel; Tetracaine; Type C Phospholipases; Vasomotor System | 2012 |
Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles.
The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP₃Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(²+) sparks and Ca(²+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(²+) and constricted the arteries. The blockade of IP₃Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(²+) sparks. Importantly, the IP₃Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(²+) waves: Ca(²+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(²+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(²+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(²+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles. Topics: Animals; Arteries; Arterioles; Boron Compounds; Calcium Signaling; Cricetinae; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Male; Mesocricetus; Models, Animal; Muscle, Skeletal; Oxazoles; Ryanodine; Ryanodine Receptor Calcium Release Channel; Tetracaine | 2011 |
Regulation of skeletal muscle fiber type and slow myosin heavy chain 2 gene expression by inositol trisphosphate receptor 1.
Innervation-dependent signaling cascades that control activation of downstream transcription factors regulate expression of skeletal muscle fiber type-specific genes. Many of the innervation-regulated signaling cascades in skeletal muscle are dependent on intracellular calcium and the mechanisms by which calcium is released from the sarcoplasmic reticulum (SR). We report that the inositol trisphosphate receptor 1 (IP3R1), responsible for calcium release from the SR as a slow wave, was more abundant in fast contracting compared to slow contracting avian muscle fibers. Furthermore, inhibition of IP3R1 activity by 2-aminoethoxydiphenylborate (2-APB) and xestospongin D induced a fiber type transition and expression of the slow myosin heavy chain 2 (slow MyHC2) gene in innervated fast muscle fibers. Activation of the slow MyHC2 promoter by IP3R1 inhibition was accompanied by a reduction in protein kinase C activity. In addition, inhibition of IP3R1 activity resulted in a reduction of nuclear factor of activated T cells (NFAT)-dependent transcription and nuclear localization, indicating that IP3R1 activity regulated NFAT transcription factor activity in skeletal muscle fibers. Myocyte enhancer factor 2 (MEF2)-dependent transcriptional activity was increased by innervation, but unaffected by IP3R1 activity. The results indicate that IP3R1 activity regulates muscle fiber type-specific gene expression in innervated muscle fibers. Topics: Animals; Boron Compounds; Calcium; Calcium Channels; Cells, Cultured; Chick Embryo; Gene Expression Regulation; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; MEF2 Transcription Factors; Muscle Fibers, Fast-Twitch; Muscle Fibers, Slow-Twitch; Muscle, Skeletal; Myoblasts; Myogenic Regulatory Factors; Myosin Heavy Chains; NFATC Transcription Factors; Oxazoles; Promoter Regions, Genetic; Protein Kinase C; Receptors, Cytoplasmic and Nuclear; Sarcoplasmic Reticulum; Transcription, Genetic | 2005 |