xav939 and olaparib

xav939 has been researched along with olaparib* in 2 studies

Other Studies

2 other study(ies) available for xav939 and olaparib

ArticleYear
Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.
    Journal of medicinal chemistry, 2017, 02-23, Volume: 60, Issue:4

    Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.

    Topics: Animals; Benzimidazoles; Enzyme Inhibitors; HEK293 Cells; Humans; Indazoles; Models, Molecular; Phenanthrenes; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Tankyrases

2017
Structural basis of selective inhibition of human tankyrases.
    Journal of medicinal chemistry, 2012, Feb-09, Volume: 55, Issue:3

    Tankyrases are poly(ADP-ribose) polymerases that have many cellular functions. They play pharmaceutically important roles, at least in telomere homeostasis and Wnt signaling, by covalently ADP-ribosylating target proteins and consequently regulating their functions. These features make tankyrases potential targets for treatment of cancer. We report here crystal structures of human tankyrase 2 catalytic fragment in complex with a byproduct, nicotinamide, and with selective inhibitors of tankyrases (IWR-1) and PARPs 1 and 2 (olaparib). Binding of these inhibitors to tankyrase 2 induces specific conformational changes. The crystal structures explain the selectivity of the inhibitors, reveal the flexibility of a substrate binding loop, and explain existing structure-activity relationship data. The first crystal structure of a PARP enzyme in complex with a potent inhibitor, IWR-1, that does not bind to the widely utilized nicotinamide-binding site makes the structure valuable for development of PARP inhibitors in general.

    Topics: Catalytic Domain; Crystallography, X-Ray; Enzyme Assays; Humans; Models, Molecular; Niacinamide; Phthalazines; Piperazines; Protein Binding; Protein Conformation; Quinolines; Structure-Activity Relationship; Tankyrases

2012
chemdatabank.com