xanthohumol has been researched along with naringenin* in 5 studies
2 review(s) available for xanthohumol and naringenin
Article | Year |
---|---|
Antiproliferative and palliative activity of flavonoids in colorectal cancer.
Flavonoids are plant bioactive compounds of great interest in nutrition and pharmacology, due to their remarkable properties as antioxidant, anti-inflammatory, antibacterial, antifungal and antitumor drugs. More than 5000 different flavonoids exist in nature, with a huge structural diversity and a plethora of interesting pharmacological properties. In this work, five flavonoids were tested for their potential use as antitumor drugs against three CRC cell lines (HCT116, HT-29 and T84). These cell lines represent three different stages of this tumor, one of which is metastatic. Xanthohumol showed the best antitumor activity on the three cancer cell lines, even better than that of the clinical drug 5-fluorouracil (5-FU), although no synergistic effect was observed in the combination therapy with this drug. On the other hand, apigenin and luteolin displayed slightly lower antitumor activities on these cancer cell lines but showed a synergistic effect in combination with 5-FU in the case of HTC116, which is of potential clinical interest. Furthermore, a literature review highlighted that these flavonoids show very interesting palliative effects on clinical symptoms such as diarrhea, mucositis, neuropathic pain and others often associated with the chemotherapy treatment of CRC. Flavonoids could provide a double effect for the combination treatment, potentiating the antitumor effect of 5-FU, and simultaneously, preventing important side effects of 5-FU chemotherapy. Topics: Antimetabolites, Antineoplastic; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Apigenin; Cell Proliferation; Colorectal Neoplasms; Drug Synergism; Flavanones; Flavonoids; Fluorouracil; HCT116 Cells; HT29 Cells; Humans; Luteolin; Palliative Care; Propiophenones | 2021 |
Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies.
The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies. Topics: Animals; Antioxidants; Citrus; Diabetes Mellitus; Disaccharides; Flavanones; Flavones; Flavonoids; Glycosides; Hesperidin; Humans; Inflammation; Phytochemicals; Polyphenols; Propiophenones | 2020 |
3 other study(ies) available for xanthohumol and naringenin
Article | Year |
---|---|
Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives.
Many natural products, particularly phenolic compounds, have been reported to have a strong inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the key enzymes in the pathology of Alzheimer's disease (AD).. Therefore, we hypothesized that some xanthahumol, naringenin, and acyl phloroglucinol derivatives (1-14) isolated from Humulus lupulus L. (hops) may have an inhibitory potential against AChE and BChE.. Inhibitory potential of compounds 1-14 were tested against AChE and BChE using ELISA microtiter assay. Different molecular docking simulations, including IFD and GOLD protocols, were implemented to verify the interactions between the ligands and the active site amino acids and also their binding energies inside the catalytic crevices of AChE and BChE. ADME/Tox analysis were used to determine pharmacological activities of the compounds.. Among them, 3‑hydroxy‑xanthohumol (IC. Our findings revealed that xanthohumol in particular could be considered as lead molecule to explore new cholinesterase inhibitors for AD. Topics: Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Evaluation, Preclinical; Flavanones; Flavonoids; Humans; Humulus; Molecular Docking Simulation; Phloroglucinol; Propiophenones; Structure-Activity Relationship | 2018 |
Quantification of xanthohumol, isoxanthohumol, 8-prenylnaringenin, and 6-prenylnaringenin in hop extracts and derived capsules using secondary standards.
Hop is a well-known and already frequently used estrogenic phytotherapeutic, containing the interesting prenylflavonoids, xanthohumol (XN), isoxanthohumol (IXN), 8- and 6-prenylnaringenin (8-PN and 6-PN). Since the use of secondary standards can form a solution whenever the determination is required of certain components, not commercially available or too expensive, it was decided to develop an accessible HPLC-DAD method for the determination of these prenylflavonoids. The amounts were determined in hop extract and capsules, using quercetin and naringenin as secondary standards. After optimization of the sample preparation and HPLC conditions, the analysis was validated according to the ICH guidelines. The response function of XN, 8-PN, quercetin and naringenin showed a linear relationship. For the determination of XN, a calibration line of at least three concentrations of quercetin has to be constructed. The correction factors for XN (quercetin) and for 8-PN (naringenin) were validated and determined to be 0.583 for XN, and 1.296 for IXN, 8-PN and 6-PN. The intermediate precision was investigated and it could be concluded that the standard deviation of the method was equal considering time and concentration (RSD of 2.5-5%). By means of a recovery experiment, it was proven that the method is accurate (recoveries of 96.1-100.1%). Additionally, by analysing preparations containing hop extracts on the Belgian market, it was shown that the method is suitable for its use, namely the determination of XN, IXN, 8-PN and 6-PN in hop extract and capsules, using quercetin and naringenin as secondary standards. Topics: Calibration; Capsules; Chemistry Techniques, Analytical; Chromatography, High Pressure Liquid; Flavanones; Flavonoids; Humulus; Phytoestrogens; Propiophenones; Quercetin; Reproducibility of Results; Xanthones | 2010 |
Effects of dietary flavonoids on the transport of cimetidine via P-glycoprotein and cationic transporters in Caco-2 and LLC-PK1 cell models.
1. The hypotheses tested were to study cimetidine as a substrate of P-glycoprotein (P-gp) and organic cation transport systems and the modulatory effects of eight flavonoid aglycones and glycosides on these transport systems using Caco-2 and LLC-PK1 cells. 2. Transport and uptake experiments of (20 microM) (3)H-cimetidine were performed with and without co-exposure to quercetin, quercetrin, rutin, naringenin, naringin, genistein, genistin, and xanthohumol. Co-treatment decreased basolateral to apical (B to A) permeability (P(app)) of cimetidine from 2.02 to 1.24 (quercetin), 1.06 (naringenin), 1.24 (genistein), and 0.96 (xanthohumol) x 10(-6) cm s(-1) in Caco-2 cells and from 10.76 to 1.65 (quercetin), 2.05 (naringenin), 2.88 (genistein), and 1.95 (xanthohumol) x 10(-6) cm s(-1) in LLC-PK1 cells. Genistin significantly reduced B to A P(app) of cimetidine to 1.24 x 10(-6) cm s(-1) in Caco-2 cells. Basolateral intracellular uptake rate of cimetidine was enhanced 145-295% when co-treated with flavonoids. Co-treatment with P-glycoprotein and organic cation transporter inhibitors, verapamil and phenoxybenzamine, resulted in reduced B to A permeability and slower basolateral intracellular uptake rate of cimetidine. Intracellular uptake rate of (14)C-tetraethylammonium (TEA) was reduced in the presence of quercetin, naringenin and genistein in LLC-PK1 cells. 3. In conclusion, quercetin, naringenin, genistein, and xanthohumol reduced P-gp-mediated transport and increased the basolateral uptake rate of cimetidine. Quercetin, naringenin, genistein, but not xanthohumol, reduced intracellular uptake rate of TEA in LLC-PK1 cells. These results suggest that flavonoids may have potential to alter the disposition profile of cimetidine and possibly other therapeutics that are mediated by P-gp and/or cation transport systems. Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Caco-2 Cells; Cimetidine; Flavanones; Flavonoids; Genistein; Humans; LLC-PK1 Cells; Organic Cation Transport Proteins; Propiophenones; Quercetin; Swine; Tetraethylammonium | 2008 |