wogonin and isolariciresinol

wogonin has been researched along with isolariciresinol* in 2 studies

Other Studies

2 other study(ies) available for wogonin and isolariciresinol

ArticleYear
Virtual Screening and Molecular Docking to Study the Mechanism of Chinese Medicines in the Treatment of Coronavirus Infection.
    Medical science monitor : international medical journal of experimental and clinical research, 2022, Jan-25, Volume: 28

    BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti-coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG pathway analyses were performed using the R language. Finally, high-throughput molecular docking was used for verification. RESULTS HDHs mainly acts on NOS3, EGFR, IL-6, MAPK8, PTGS2, MAPK14, NFKB1, and CASP3 through quercetin, luteolin, wogonin, indirubin alkaloids, ß-sitosterol, and isolariciresinol. These targets are mainly involved in the regulation of biological processes such as inflammation, activation of MAPK activity, and positive regulation of NF-kappaB transcription factor activity. Pathway analysis further revealed that the pathways regulated by these targets mainly include: signaling pathways related to viral and bacterial infections such as tuberculosis, influenza A, Ras signaling pathways; inflammation-related pathways such as the TLR, TNF, MAPK, and HIF-1 signaling pathways; and immune-related pathways such as NOD receptor signaling pathways. These pathways play a synergistic role in inhibiting lung inflammation and regulating immunity and antiviral activity. CONCLUSIONS HDHs play a role in the treatment of coronavirus infection by regulating the body's immunity, fighting inflammation, and antiviral activities, suggesting a molecular basis and new strategies for the treatment of COVID-19 and a foundation for the screening of new antiviral drugs.

    Topics: Alkaloids; Caspase 3; Coronavirus; Coronavirus Infections; COVID-19 Drug Treatment; Cyclooxygenase 2; Databases, Pharmaceutical; Drugs, Chinese Herbal; Flavanones; Humans; Indoles; Interleukin-6; Lignin; Luteolin; Mitogen-Activated Protein Kinase 14; Mitogen-Activated Protein Kinase 8; Molecular Docking Simulation; Naphthols; NF-kappa B p50 Subunit; Nitric Oxide Synthase Type III; Protein Interaction Maps; Quercetin; SARS-CoV-2; Signal Transduction; Sitosterols; Transcriptome

2022
[Non-alkaloid chemical constituents from Coptis chinensis].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2012, Volume: 37, Issue:9

    To separate and identify chemical constituents from Coptis chinensis.. The compounds were separated and purified by various chromatographic techniques. Their structures were identified on the basis of their physicochemical properties using spectral techniques such as NMR and MS.. Thirteen compounds were separated from ethanol extracts of C. chinensis, including seven lignans, three simple phenylpropanoids, two flavones and one phenolic acid, and identified as erythro-guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (1), threo-guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (2), (+)-pinoresinol (3), (+)-medioresinol (4), (+)-lariciresinol (5), (+)-5'-methoxylariciresinol (6), (+)-isolariciresinol (7), chlorogenic acid (8), ferulic acid (9), Z-octadecyl caffeate (10), rhamnetin (11), wogonin (12), and vanillic acid (13).. Compounds 1, 2, 4, 6, 10-13 were separated from the genus Coptis for the first time.

    Topics: Caffeic Acids; Chlorogenic Acid; Coptis; Coumaric Acids; Ethanol; Flavanones; Flavones; Furans; Hydroxybenzoates; Lignans; Lignin; Naphthols; Quercetin; Vanillic Acid

2012