vulpinic-acid has been researched along with gyrophoric-acid* in 2 studies
2 other study(ies) available for vulpinic-acid and gyrophoric-acid
Article | Year |
---|---|
Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes.
Vulpinic and gyrophoric acids are known as ultraviolet filters for natural lichen populations because of their chemical structures. However, to the best of our knowledge, there has been no reference to their cosmetic potential for skin protection against ultraviolet B (UVB)-induced damage and, consequently, we propose to highlight their photoprotective profiles in human keratinocytes (HaCaT). Therefore, vulpinic acid and gyrophoric acid were isolated from acetone extracts of Letharia vulpina and Xanthoparmelia pokornyi, respectively. Their photoprotective activities on irradiated HaCaT cells and destructive effects on non-irradiated HaCaT cells were compared through in vitro experimentation: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, 4',6-diamino-2-phenylindole and tetramethylrhodamine B isothiocyanate-phalloidin staining protocols. Both of the lichen substances effectively prevented cytotoxic, apoptotic and cytoskeleton alterative activities of 2.5 J/cm(2) UVB in a dose-dependent manner. Moreover, vulpinic and gyrophoric acids showed no toxic, apoptotic or cytoskeleton alterative effects on non-irradiated HaCaT cells, except at high doses (≥400 μM) of gyrophoric acid. The findings suggest that vulpinic and gyrophoric acids can be promising cosmetic ingredients to photo-protect human skin cells and should therefore be further investigated by in vitro and in vivo multiple bioassays. Topics: Benzoates; Cell Line; Cell Survival; Furans; Humans; Keratinocytes; Lichens; Phenylacetates; Radiation-Protective Agents; Skin; Ultraviolet Rays | 2016 |
Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds.
Five compounds representative of major structural classes of lichen polyketides, VIZ. (+)-usnic (1), salazinic (2), vulpinic (3), gyrophoric (4), and evernic acids (5), were investigated for their ability to affect cell proliferation or wound healing, two functional targets of relevance for research on cancer or tissue regeneration. The experiments were carried out on MM98 malignant mesothelioma cells, A431 vulvar carcinoma cells, and HaCaT keratinocytes. The NRU and CV cytotoxicity assays showed high toxicity for (+)-usnic acid, intermediate toxicity for vulpinic acid, and low toxicity for salazinic, gyrophoric and evernic acids. Scratch wounding experiments on HaCaT monolayers, in the presence of subtoxic doses of lichen compounds, showed strong wound closure effects by (+)-usnic and gyrophoric acid, an intermediate effect by vulpinic and salazinic acids, and no effect by evernic acid. A combination of (+)-usnic and gyrophoric acids gave a further increase in the wound closure rates. The results of a cell migration test correlated with the wound healing data. In conclusion, (+)-usnic acid might be a particularly interesting compound for the prevention of hyperproliferation syndromes, while (+)-usnic and gyrophoric acids qualify as interesting leads in the promotion of tissue regeneration. Topics: Antineoplastic Agents, Phytogenic; Benzoates; Benzofurans; Cell Line, Tumor; Cell Proliferation; Female; Furans; Humans; Hydroxybenzoates; Keratinocytes; Lactones; Lichens; Neoplasms; Phenylacetates; Phytotherapy; Plant Extracts; Salicylates; Wound Healing | 2009 |