vorinostat has been researched along with rotenone in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (66.67) | 24.3611 |
2020's | 1 (33.33) | 2.80 |
Authors | Studies |
---|---|
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Bisen, PS; Bundela, S; Sharma, A | 1 |
Avci, B; Bilge, SS; Çelik, ZB; Günaydin, C; Kara, N | 1 |
3 other study(ies) available for vorinostat and rotenone
Article | Year |
---|---|
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine.
Topics: Administration, Oral; Algorithms; Antineoplastic Agents; Berberine; Bortezomib; Colchicine; Databases, Pharmaceutical; Databases, Protein; Diterpenes; Humans; Hydroxamic Acids; Limonins; Lovastatin; Models, Statistical; Mouth Neoplasms; Predictive Value of Tests; Resveratrol; Rotenone; Stilbenes; Support Vector Machine; Vorinostat | 2015 |
SAHA attenuates rotenone-induced toxicity in primary microglia and HT-22 cells.
Topics: Animals; Cell Survival; Dose-Response Relationship, Drug; Histone Deacetylase Inhibitors; Inflammation Mediators; Mice; Mice, Inbred C57BL; Microglia; Oxidative Stress; Rotenone; Vorinostat | 2021 |