voriconazole has been researched along with lovastatin in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 4 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Chamilos, G; Kontoyiannis, DP; Lewis, RE | 1 |
Alcazar-Fuoli, L; Bignell, E; Blatzer, M; Cairns, T; Grimalt, JO; Gründlinger, M; Haas, H; Lopez, JF; Puempel, T; Yasmin, S | 1 |
1 review(s) available for voriconazole and lovastatin
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
5 other study(ies) available for voriconazole and lovastatin
Article | Year |
---|---|
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Lovastatin has significant activity against zygomycetes and interacts synergistically with voriconazole.
Topics: Animals; Antifungal Agents; Drug Synergism; Fungi; Lovastatin; Microbial Sensitivity Tests; Mycoses; Pyrimidines; Triazoles; Voriconazole | 2006 |
Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus.
Topics: Amphotericin B; Animals; Aspergillus fumigatus; Biomass; Biosynthetic Pathways; Enoyl-CoA Hydratase; Ergosterol; Ferric Compounds; Gene Deletion; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Fungal; Gene Silencing; Genes, Fungal; Hydroxamic Acids; Hydroxymethylglutaryl CoA Reductases; Iron Deficiencies; Ligases; Lovastatin; Mevalonic Acid; Mice; Microbial Sensitivity Tests; Oxidative Stress; Pulmonary Aspergillosis; Pyrimidines; Siderophores; Triazoles; Up-Regulation; Virulence; Voriconazole | 2012 |