vitamin-k-semiquinone-radical has been researched along with demethylmenaquinone* in 10 studies
1 review(s) available for vitamin-k-semiquinone-radical and demethylmenaquinone
Article | Year |
---|---|
Biosynthesis of vitamin K (menaquinone) in bacteria.
Topics: Animals; Bacillus subtilis; Bacteria; Escherichia coli; Genes, Bacterial; Intestines; Ketoglutaric Acids; Lactobacillus; Methylation; Mycobacterium; Naphthols; Oxygen; Phenylbutyrates; Prevotella melaninogenica; Shikimic Acid; Staphylococcus aureus; Vitamin K; Vitamin K 2 | 1982 |
9 other study(ies) available for vitamin-k-semiquinone-radical and demethylmenaquinone
Article | Year |
---|---|
A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene.
Strains of Escherichia coli with mutations in the ubiE gene are not able to catalyze the carbon methylation reaction in the biosynthesis of ubiquinone (coenzyme Q) and menaquinone (vitamin K2), essential isoprenoid quinone components of the respiratory electron transport chain. This gene has been mapped to 86 min on the chromosome, a region where the nucleic acid sequence has recently been determined. To identify the ubiE gene, we evaluated the amino acid sequences encoded by open reading frames located in this region for the presence of sequence motifs common to a wide variety of S-adenosyl-L-methionine-dependent methyltransferases. One open reading frame in this region (o251) was found to encode these motifs, and several lines of evidence that confirm the identity of the o251 product as UbiE are presented. The transformation of a strain harboring the ubiE401 mutation with o251 on an expression plasmid restored both the growth of this strain on succinate and its ability to synthesize both ubiquinone and menaquinone. Disruption of o251 in a wild-type parental strain produced a mutant with defects in growth on succinate and in both ubiquinone and menaquinone synthesis. DNA sequence analysis of the ubiE401 allele identified a missense mutation resulting in the amino acid substitution of Asp for Gly142. E. coli strains containing either the disruption or the point mutation in ubiE accumulated 2-octaprenyl-6-methoxy-1,4-benzoquinone and demethylmenaquinone as predominant intermediates. A search of the gene databases identified ubiE homologs in Saccharomyces cerevisiae, Caenorhabditis elegans, Leishmania donovani, Lactococcus lactis, and Bacillus subtilis. In B. subtilis the ubiE homolog is likely to be required for menaquinone biosynthesis and is located within the gerC gene cluster, known to be involved in spore germination and normal vegetative growth. The data presented identify the E. coli UbiE polypeptide and provide evidence that it is required for the C methylation reactions in both ubiquinone and menaquinone biosynthesis. Topics: Alleles; Amino Acid Sequence; Base Sequence; Escherichia coli; Escherichia coli Proteins; Genes, Bacterial; Hydroquinones; Methyltransferases; Molecular Sequence Data; Mutation; Open Reading Frames; Point Mutation; Sequence Alignment; Succinates; Succinic Acid; Transformation, Bacterial; Ubiquinone; Vitamin K; Vitamin K 2 | 1997 |
Aeration-dependent changes in composition of the quinone pool in Escherichia coli. Evidence of post-transcriptional regulation of the quinone biosynthesis.
The aeration-dependent changes in content of various quinones in Escherichia coli were found to be unaffected by a prokaryotic translation inhibitor chloramphenicol. In addition, this process was shown to be completely intact in cells with mutated fnr, arc and appY loci. It is assumed that E. coli possesses a special system of oxygen-dependent post-transcriptional regulation of the quinone biosynthetic pathways. Topics: Aerobiosis; Anaerobiosis; Chloramphenicol; Cytochrome b Group; Cytochromes; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Genotype; Oxidoreductases; Quinones; Species Specificity; Ubiquinone; Vitamin K; Vitamin K 2 | 1997 |
An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration.
The mutant strain AN70 (ubiE) of Escherichia coli which is known to lack ubiquinone (Young IG et al. 1971), was analyzed for menaquinone (MK) and demethylmenaquinone (DMK) contents. In contrast to the wild-type, strain AN70 contained only DMK, but no MK. The mutant strain was able to grow with fumarate, trimethylamine N-oxide (TMAO) and dimethylsulfoxide (DMSO), but not with nitrate as electron acceptor. The membranes catalyzed anaerobic respiration with fumarate and TMAO at 69 and 74% of wild-type rates. DMSO respiration was reduced to 38% of wild-type activities and nitrate respiration was missing (less than or equal to 8% of wild-type), although the respective enzymes were present in wild-type rates. The results complement earlier findings which demonstrated a role for DMK only in TMAO respiration (Wissenbach et al. 1990). It is concluded, that DMK (in addition to MK) can serve as a redox mediator in fumarate, TMAO and to some extent in DMSO respiration, but not in nitrate respiration. In strain AN70 (ubiE) the lack of ubiquinone (Q) is due to a defect in a specific methylation step of Q biosynthesis. Synthesis of MK from DMK appears to depend on the same gene (ubiE). Topics: Anaerobiosis; Dimethyl Sulfoxide; Electron Transport; Escherichia coli; Fumarates; Methylamines; Mutation; Nitrates; Oxidants; Oxidation-Reduction; Vitamin K; Vitamin K 2 | 1992 |
The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli.
The respiratory activities of E. coli with H2 as donor and with nitrate, fumarate, dimethylsulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as acceptor were measured using the membrane fraction of quinone deficient strains. The specific activities of the membrane fraction lacking naphthoquinones with fumarate, DMSO or TMAO amounted to less than or equal to 2% of those measured with the membrane fraction of the wild-type strain. After incorporation of vitamin K1 [instead of menaquinone (MK)] into the membrane fraction deficient of naphthoquinones, the activities with fumarate or DMSO were 92% or 17%, respectively, of the activities which could be theoretically achieved. Incorporation of demethylmenaquinone (DMK) did not lead to a stimulation of the activities of the mutant. In contrast, the electron transport activity with TMAO was stimulated by the incorporation of either vitamin K1 or DMK. Nitrate respiration was fully active in membrane fractions lacking either naphthoquinones or Q, but was less than or equal to 3% of the wild-type activity, when all quinones were missing. Nitrate respiration was stimulated on the incorporation of either vitamin K1 or Q into the membrane fraction lacking quinones, while the incorporation of DMK was without effect. These results suggest that MK is specifically involved in the electron transport chains catalyzing the reduction of fumarate or DMSO, while either MK or DMK serve as mediators in TMAO reduction. Nitrate respiration requires either Q or MK. Topics: Anaerobiosis; Dimethyl Sulfoxide; Electron Transport; Escherichia coli; Fumarates; Methylamines; Nitrates; Oxidation-Reduction; Oxidoreductases; Vitamin K; Vitamin K 2 | 1990 |
Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr-independent expression.
Escherichia coli grown with glucose in the absence of added electron acceptors contained 3-4 times more naphthoquinones (menaquinone plus demethylmenaquinone) than in the presence of O2. Presence of electron acceptors resulted in a slight additional increase of the naphthoquinone content. A strain defective in the fnr gene, which encodes the transcriptional activator of anaerobic respiration, showed the same response. With fumarate or dimethyl sulfoxide present, 94% of the naphthoquinones consisted of menaquinone, while with nitrate up to 78% was demethylmenaquinone. With trimethylamine N-oxid as the acceptor the proportion was intermediate. From the donor substrates of anaerobic respiration only glycerol had a significant influence on the ratio of the contents of the 2 quinones. It is concluded that FNR, the gene product of the fnr gene, is not required for anaerobic derepression of naphthoquinone biosynthesis. Menaquinone appears to be involved specifically in the respiration with fumarate or dimethyl sulfoxide, and demethylmenaquinone in nitrate respiration. Both naphthoquinones appear to serve in trimethylamine N-oxide respiration. Topics: Anaerobiosis; Bacterial Proteins; Dimethyl Sulfoxide; Electron Transport; Escherichia coli; Fumarates; Gene Expression Regulation; Mutation; Oxygen; Vitamin K; Vitamin K 2 | 1988 |
High-performance liquid chromatographic analysis of demethylmenaquinone and menaquinone mixtures from bacteria.
Demethylmenaquinone and menaquinone mixtures from some species of enterobacteria were analysed by reverse-phase partition high-performance liquid chromatography. This method allowed clear separation and quantitative determination of these quinone components. Topics: Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Citrobacter; Enterobacter; Enterobacteriaceae; Enterococcus faecalis; Vitamin K; Vitamin K 2 | 1988 |
Biosynthesis of menaquinones. Enzymatic prenylation of 1,4-dihydroxy-2-naphthoate by Micrococcus luteus membrane fractions.
1,4-Dihydroxy-2-naphthoate:polyprenyltransferase was detected in the membrane fraction from Micrococcus luteus. The specificity of the enzyme ws so tolerant as regards the prenyl-donating substrate that prenyl pyrophosphates ranging in chain length from C15 to C45 were active as substrates. The monophosphate esters were also active, though the reactivities were much lower than those of the corresponding pyrophosphates. The enzyme showed rigorous specificity with respect to the aromatic substrate. Neither 1,4-dihydroxynaphthalene nor its 2-methyl derivative was active at all. 1,4-Dihydroxy-3-methyl-2-naphthoate could be prenylated to afford menaquinone, but the reactivity was much less than that of its demethyl derivative. These results support the view that menaquinone biosynthesis involves the prenylation of 1,4-dihydroxy-2-naphthoate prior to decarboxylation or methylation. Topics: Alkyl and Aryl Transferases; Cell Membrane; Farnesol; Micrococcus; Naphthols; Polyisoprenyl Phosphates; Sesquiterpenes; Substrate Specificity; Transferases; Vitamin K; Vitamin K 2 | 1981 |
High-performance liquid chromatography of menaquinone-4, 2,3-epoxymenaquinone-4, demethylmenaquinone-4 and related compounds.
Topics: Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Solvents; Vitamin K; Vitamin K 2 | 1979 |
Correlation of the function of demethylmenaquinone in bacterial electron transport with its redox potential.
Topics: Electron Transport; Haemophilus; NAD; Oxidation-Reduction; Oxygen Consumption; Quinones; Ubiquinone; Vitamin K; Vitamin K 2 | 1976 |