vitamin-k-semiquinone-radical and dehydroacetic-acid

vitamin-k-semiquinone-radical has been researched along with dehydroacetic-acid* in 2 studies

Other Studies

2 other study(ies) available for vitamin-k-semiquinone-radical and dehydroacetic-acid

ArticleYear
Mechanism of VKORC1 and VKORC1L1 signaling in the effects of sodium dehydroacetate on coagulation factors in rat hepatocytes.
    Toxicology in vitro : an international journal published in association with BIBRA, 2023, Volume: 87

    Sodium dehydroacetate (Na-DHA) is widely used as an antibacterial and preservative additive in food and cosmetics. Previously, we reported that repeated oral administration of Na-DHA induces coagulation disorders, and inhibited liver vitamin K epoxide reductase complex subunit 1 (VKORC1) and VKORC1-like protein 1 (VKORC1L1) in rats. However, the effects of Na-DHA on coagulation factors in rat hepatocytes and the mechanism of VKORC1 and VKORC1L1 signaling in that process are unclear. Here, we constructed stable Vkorc1 and Vkorc1l1 overexpressing cell lines using lentiviruses and transfected small interfering RNAs into buffalo rat liver BRL3A cells for Vkorc1 and Vkorc1l1 overexpression and silencing, respectively. After treatment with 5 mmol/L Na-DHA for 24 h, VKORC1 and VKORC1L1 expression levels were detected by real-time PCR and western blotting. Vitamin K (VK) and factor IX (FIX) contents were detected using enzyme linked immunosorbent assays. We observed that Na-DHA inhibited VKORC1 and VKORC1L1 expression levels and reduced VK and FIX levels in rat hepatocytes. Overexpression or silencing of Vkorc1 and Vkorc1l1 increased or decreased, respectively, the production and secretion of VK and FIX in rat hepatocytes, and alleviated or aggravated the inhibitory effects of Na-DHA on VKORC1 and VKORC1L1 expression levels. Taken together, the results indicated that both VKORC1 and VKORC1L1 signaling play regulatory roles in the effects of Na-DHA on coagulation factors in rat hepatocytes.

    Topics: Animals; Blood Coagulation Factors; Hepatocytes; Rats; Vitamin K; Vitamin K Epoxide Reductases

2023
Sodium dehydroacetate induces coagulation dysfunction by inhibiting liver vitamin K epoxide reductase complex subunit 1 in Wistar rats.
    Research in veterinary science, 2019, Volume: 124

    Sodium dehydroacetate (Na-DHA), an antibiotic agent that combats growth of bacteria, fungi, and yeast, is used as a preservative in animal feed, food, and cosmetics. We previously reported that Na-DHA induces coagulation anomalies in Wistar rats, but the anticoagulant mechanism of Na-DHA remains to be established. Here we report that Na-DHA prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT) in male and female Wistar rats. In addition, Na-DHA decreased vitamin K (VK) levels and increased the levels of protein induced by vitamin K absence/antagonist-II (PIVKA-II) in rat serum. Moreover, we found that treatment with VK not only reversed Na-DHA-decreased serum VK and -increased PIVKA-II levels, but also attenuated Na-DHA-prolonged PT and APTT, suggesting that Na-DHA-decreased serum VK level contributes to the anticoagulation due to Na-DHA. Further we found that Na-DHA inhibited vitamin K epoxide reductase complex subunit 1 (VKORC1), a key enzyme in VK recycling, in the liver tissue of Wistar rats, as evidenced by reduced mRNA and protein levels of VKORC1 following Na-DHA treatment. Taken together, our data indicate that Na-DHA inhibits liver VKORC1, resulting in a decrease of serum VK levels, leading to abnormal coagulation in rats.

    Topics: Animals; Anticoagulants; Blood Coagulation; Female; Liver; Male; Partial Thromboplastin Time; Protective Agents; Prothrombin Time; Pyrones; Rats; Rats, Wistar; Vitamin K; Vitamin K Epoxide Reductases

2019