vitamin-k-semiquinone-radical has been researched along with 3-aminobenzamide* in 2 studies
2 other study(ies) available for vitamin-k-semiquinone-radical and 3-aminobenzamide
Article | Year |
---|---|
Prevention of oxidant-induced cell death in Caco-2 colon carcinoma cells after inhibition of poly(ADP-ribose) polymerase and Ca2+ chelation: involvement of a common mechanism.
The human colon carcinoma cell line Caco-2 was exposed to the oxidative stress-inducing agents menadione (MEN), 2,3-dimethoxy-1,4-naphthoquinone, and hydrogen peroxide. All three agents caused DNA damage which was assessed by alkaline unwinding. Further, all three agents induced intensive NAD+ depletion, followed by a decrease in intracellular ATP and viability. Inhibition of poly(ADP-ribose) polymerase (PARP, EC 2.4.2.30) by 3-aminobenzamide prevented the depletion of NAD+. These cells had a higher viability and ATP content. The most pronounced effect was observed with 25 microM of MEN, while at higher levels a partial preservation of NAD+ was observed with no effect on ATP or viability. The chelation of intracellular calcium by bis-(o-aminophenoxy)-ethane-N,N,N1,N1-tetraacidic acid/tetraacetoxymethyl) ester also prevented the dramatic loss of NAD+, demonstrating that Ca2+ is an activating factor in PARP-mediated cell killing. Topics: Adenosine Triphosphate; Benzamides; Caco-2 Cells; Calcium; Cell Death; Chelating Agents; DNA Damage; DNA, Neoplasm; Egtazic Acid; Glutathione; Humans; Hydrogen Peroxide; Kinetics; NAD; Naphthoquinones; Oxidants; Oxidative Stress; Poly(ADP-ribose) Polymerase Inhibitors; Vitamin K | 1999 |
NAD+ depletion and cytotoxicity in isolated hepatocytes.
Activation of poly(ADP-ribose)polymerase by DNA damaging agents causes a depletion of intracellular NAD+ and subsequent lowering of ATP pools, which if extensive may lead to cell death. We have studied the cytotoxicity to isolated hepatocytes of dimethyl sulphate, a direct-acting carcinogen and mutagen, hydrogen peroxide, generated by glucose/glucose oxidase, and menadione (2-methyl-1,4-naphthoquinone) in relation to their effects on intracellular NAD+ and ATP levels. Both dimethyl sulphate and glucose/glucose oxidase caused a depletion of NAD+, which was apparently due to an activation of poly(ADP-ribose)polymerase as it was prevented by inhibitors of the polymerase, i.e. 3-aminobenzamide and nicotinamide. This protection of intracellular NAD+ was accompanied by a prevention of the cytotoxicity of both dimethyl sulphate and glucose/glucose oxidase, while it did not alter the decrease in intracellular ATP they induced. This apparent dissociation of effects on ATP from NAD+ does not support the suggestion that activation of poly(ADP-ribose)polymerase leads to a decrease in cellular ATP as a consequence of NAD+ depletion. Menadione also caused a depletion of NAD+ which preceded cytotoxicity, but in contrast to dimethyl sulphate and H2O2 this depletion did not involve poly(ADP-ribose)polymerase as it was not prevented by inhibitors of the enzyme. Our results also indicate that the cytotoxicity of menadione is not mediated by H2O2 alone. Marked depletion of intracellular NAD+ prior to toxicity and a protection against toxicity associated with maintenance of NAD+ suggest a possible role for the maintenance of intracellular NAD+ in cellular integrity. Topics: Adenosine Triphosphate; Animals; Benzamides; Cell Survival; DNA Damage; In Vitro Techniques; Liver; Male; NAD; Poly(ADP-ribose) Polymerases; Rats; Rats, Inbred Strains; Vitamin K | 1988 |