vitamin-k-semiquinone-radical and 2-keto-4-mercaptobutyric-acid

vitamin-k-semiquinone-radical has been researched along with 2-keto-4-mercaptobutyric-acid* in 2 studies

Other Studies

2 other study(ies) available for vitamin-k-semiquinone-radical and 2-keto-4-mercaptobutyric-acid

ArticleYear
Inhibition studies on the involvement of flavoprotein reductases in menadione- and nitrofurantoin-stimulated oxyradical production by hepatic microsomes of flounder (Platichthys flesus).
    Journal of biochemical toxicology, 1994, Volume: 9, Issue:2

    Inhibitors of mammalian cytochrome P450 and P450 reductase were used to investigate the enzymes in flounder (Platichthys flesus) hepatic microsomes involved in the stimulation of NAD(P)H-dependent iron/EDTA-mediated 2-keto-4-methiolbutyric acid (KMBA) oxidation (hydroxyl radical production) by the redox cycling compounds menadione and nitrofurantoin. Inhibitors were first tested for their effects on flounder microsomal P450 and flavoprotein reductase activities. Ellipticine gave type II difference binding spectra (app. Ks 5.36 microM; delta A max 0.16 nmol-1 P450) and markedly inhibited NADPH-cytochrome c reductase, NADPH-cytochrome P450 reductase, and monooxygenase (benzo[a]pyrene metabolism) activities. 3-aminopyridine adenine dinucleotide phosphate (AADP; competitive inhibitor of P450 reductase) inhibited NADPH-cytochrome c but not NADH-cytochrome c or NADH-ferricyanide reductase activities. Alkaline phosphatase (inhibitor of rabbit P450 reductase) stimulated NADPH-cytochrome c reductase activity seven fold but had less effect on NADH-reductase activities. AADP inhibited nitrofurantoin- and menadione-stimulated KMBA oxidation by 45 and 17%, respectively, indicating the involvement of P450 reductase at least in the former. In contrast, ellipticine had relatively little effect, possibly because, unlike cytochrome c, the smaller xenobiotic molecules can access the hydrophilic binding site of P450 reductase. Alkaline phosphatase stimulated NAD(P)H-dependent basal and xenobiotic-stimulated KMBA oxidation, showing general consistency with the results for reductase activities. Overall, the studies indicate both similarities (ellipticine, AADP) and differences (alkaline phosphatase) between the flounder and rat hepatic microsomal enzyme systems.

    Topics: Animals; Butyrates; Flounder; Free Radical Scavengers; Hydroxyl Radical; Microsomes, Liver; NADH Dehydrogenase; NADH, NADPH Oxidoreductases; NADPH-Ferrihemoprotein Reductase; Nitrofurantoin; Sulfhydryl Compounds; Vitamin K

1994
Microsomal interactions between iron, paraquat, and menadione: effect on hydroxyl radical production and alcohol oxidation.
    Archives of biochemistry and biophysics, 1985, Volume: 242, Issue:1

    The addition of menadione or paraquat to rat liver microsomes resulted in about a threefold increase in the production of hydroxyl radical (.OH) as reflected by the increased oxidation of 2-keto-4-thiomethylbutyric acid (KMBA) to ethylene. This increase was not sensitive to superoxide dismutase but was blocked by catalase. The increase occurred in the absence of added iron and was not affected by the potent iron chelating agent, desferrioxamine, which suggests the possibility that .OH was produced from an interaction between H2O2 and the paraquat or menadione radical. Menadione and paraquat were especially effective in stimulating the oxidation of KMBA in the presence of certain iron chelates such as ferric-ADP, -ATP, or -EDTA, but not ferric-desferrioxamine, -citrate, or -histidine, or unchelated iron. In fact, ferric-ADP or -ATP only stimulated .OH production in the presence of menadione or paraquat. In the presence of ferric-EDTA, the greater than additive increase of .OH production was sensitive to catalase, but not to superoxide dismutase, suggesting the possibility of reduction of ferric-EDTA by paraquat or menadione radical. The interactions with ferric adenine nucleotides may increase the catalytic effectiveness of menadione or paraquat in producing potent oxidants such as the hydroxyl radical, and thus play a role in the toxicity associated with these agents. Paraquat and menadione had little effect on the overall oxidation of ethanol by microsomes. Microsomal drug metabolism was decreased by menadione or paraquat. As a consequence, the effect of these agents on the microsomal oxidation of ethanol was complex since it appeared that paraquat and menadione stimulated the oxidation of ethanol by a .OH-dependent mechanism, but inhibited the oxidation of ethanol by a cytochrome P-450-dependent oxidation pathway. Experiments with carbon monoxide, ferric-EDTA, and 2-butanol plus catalase tended to verify that microsomal oxidation of alcohols was increased by a .OH-dependent pathway when menadione or paraquat were added to microsomes.

    Topics: Aminopyrine; Animals; Butanols; Butyrates; Carbon Monoxide; Catalase; Deferoxamine; Drug Interactions; Ethanol; Ethylenes; Flavin-Adenine Dinucleotide; Hydroxides; Hydroxyl Radical; Iron; Microsomes, Liver; Paraquat; Rats; Sulfhydryl Compounds; Superoxide Dismutase; Vitamin K

1985