viroxime and pleconaril

viroxime has been researched along with pleconaril* in 2 studies

Other Studies

2 other study(ies) available for viroxime and pleconaril

ArticleYear
A preclinical assessment to repurpose drugs to target type 1 diabetes-associated type B coxsackieviruses.
    Diabetic medicine : a journal of the British Diabetic Association, 2020, Volume: 37, Issue:11

    To screen several antiviral drugs systematically for their efficacy against type B coxsackieviruses.. Ten drugs with different antiviral mechanisms were analysed for their efficacy against prototype strains of type B coxsackieviruses in A549 cells. Cell viability was quantified in fixed cells using a colorimetric assay. Median effective dose was interpolated from the triplicated experiments and the dose-response curves were generated for each drug-virus combination. Drug cytotoxicity was similarly quantified and selectivity indices calculated.. Hizentra, pleconaril, fluoxetine, norfluoxetine, ribavirin, favipiravir, and guanidine hydrochloride were able to abrogate infection by all tested viruses, with the exception of complete inefficacy of pleconaril against coxsackievirus B3 and favipiravir against coxsackievirus B2. The effective doses for Hizentra, enviroxime, ribavirin, favipiravir, and pleconaril were clearly below their therapeutic serum concentrations, while the effective concentrations of fluoxetin, norfluoxetine and itraconazole exceeded their therapeutic serum concentrations. Lovastatin and azithromycin did not efficiently block type B coxsackieviruses.. Hizentra, enviroxime, pleconaril, ribavirin, and favipiravir are effective against type B coxsackieviruses in vitro in their therapeutic serum concentrations. These antiviral drugs are therefore attractive candidates for type 1 diabetes prevention/treatment trials. They can also be used in other clinical conditions caused by type B coxsackieviruses.

    Topics: A549 Cells; Amides; Antiviral Agents; Azithromycin; Benzimidazoles; Coxsackievirus Infections; Diabetes Mellitus, Type 1; Drug Repositioning; Enterovirus B, Human; Fluoxetine; Guanidine; Humans; Immunoglobulin G; Lovastatin; Oxadiazoles; Oxazoles; Oximes; Pyrazines; Ribavirin; Sulfonamides

2020
Susceptibilities of enterovirus D68, enterovirus 71, and rhinovirus 87 strains to various antiviral compounds.
    Antiviral research, 2016, Volume: 131

    Compounds were evaluated for antiviral activity in rhabdomyosarcoma (RD) cells against a recent 2014 clinical isolate of enterovirus D68 (EV-D68), a 1962 strain of EV-68D, rhinovirus 87 (RV-87, serologically the same as EV-D68), and enterovirus 71 (EV-71). Test substances included known-active antipicornavirus agents (enviroxime, guanidine HCl, pirodavir, pleconaril, and rupintrivir), nucleobase/nucleoside analogs (3-deazaguanine and ribavirin), and three novel epidithiodiketopiperazines (KCN-2,2'-epi-19, KCN-19, and KCN-21). Of these, rupintrivir was the most potent, with 50% inhibition of viral cytopathic effect (EC50) and 90% inhibition (EC90) of virus yield at 0.0022-0.0053 μM against EV-D68. Enviroxime, pleconaril and the KCN compounds showed efficacy at 0.01-0.3 μM; 3-deazaguanine and pirodavir inhibited EV-D68 at 7-13 μM, and guanidine HCl and ribavirin were inhibitory at 80-135 μM. Pirodavir was active against EV-71 (EC50 of 0.78 μM) but not against RV-87 or EV-D68, and all other compounds were less effective against EV-71 than against RV-87 and EV-D68. The most promising compound inhibiting both virus infections at low concentrations was rupintrivir. Antiviral activity was confirmed for the ten compounds in virus yield reduction (VYR) assays in RD cells, and for enviroxime, guanidine HCl, and pirodavir by cytopathic effect (CPE) assays in A549, HeLa-Ohio-1, and RD cells. These studies may serve as a basis for further pre-clinical discovery of anti-enterovirus inhibitors. Furthermore, the antiviral profiles and growth characteristics observed herein support the assertion that EV-D68 should be classified together with RV-87.

    Topics: A549 Cells; Antimetabolites; Antiviral Agents; Benzimidazoles; Enterovirus A, Human; Enterovirus D, Human; Guanine; HeLa Cells; Humans; Oxadiazoles; Oxazoles; Oximes; Picornaviridae; Piperazines; Piperidines; Pyridazines; Rhabdomyosarcoma; Rhinovirus; Ribavirin; Sulfonamides

2016