viridiflorol and alpha-terpineol

viridiflorol has been researched along with alpha-terpineol* in 2 studies

Other Studies

2 other study(ies) available for viridiflorol and alpha-terpineol

ArticleYear
Melaleuca quinquenervia essential oil inhibits α-melanocyte-stimulating hormone-induced melanin production and oxidative stress in B16 melanoma cells.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2017, Oct-15, Volume: 34

    Essential oils are odorous, volatile products of plant secondary metabolism, which are found in many leaves and stems. They show important biological activities, which account for the development of aromatherapy used in complementary and alternative medicine. The essential oil extracted from Melaleuca quinquenervia (Cav.) S.T. Blake (paperbark) (MQ-EO) has various functional properties.. The aim of this study is to investigate the chemical composition of MQ-EO by using gas chromatography-mass spectrometry (GC-MS) and evaluate its tyrosinase inhibitory activity.. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics was used to identify 18 components in MQ-EO. The main components identified were 1,8-cineole (21.60%), α-pinene (15.93%), viridiflorol (14.55%), and α-terpineol (13.73%). B16 melanoma cells were treated with α-melanocyte-stimulating hormone (α-MSH) in the presence of various concentrations of MQ-EO or its major compounds. Cell viability was accessed by MTT assay and cellular tyrosinase activity and melanin content were determined by using spectrophotographic methods. The antioxidant mechanism of MQ-EO in α-MSH stimulated B16 cells was also investigated.. In α-melanocyte-stimulating hormone (α-MSH)-stimulated murine B16 melanoma cells, MQ-EO, 1,8-cineole, α-pinene, and α-terpineol significantly reduced melanin content and tyrosinase activity. Moreover, MQ-EO, 1,8-cineole, α-pinene, and α-terpineol decreased malondialdehyde (MDA) levels. In addition, restored glutathione (GSH) levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase activities were increased in α-MSH-stimulated B16 cells. MQ-EO not only decreased apoptosis but also reduced DNA damage in α-MSH stimulated B16 cells. These results showed that MQ-EO and its main components, 1,8-cineole, α-pinene, and α-terpineol, possessed potent anti-tyrosinase and anti-melanogenic activities besides the antioxidant properties.. The active functional components of MQ-EO were found to be 1,8-cineole, α-pinene, and α-terpineol. Consequently, the results of present study suggest that MQ-EO is non-cytotoxic and can be used as a skin-whitening agent, both medically and cosmetically.

    Topics: alpha-MSH; Animals; Antioxidants; Bicyclic Monoterpenes; Cell Survival; Cyclohexane Monoterpenes; Cyclohexanols; Cyclohexenes; Eucalyptol; Gas Chromatography-Mass Spectrometry; Glutathione; Glutathione Peroxidase; Melaleuca; Melanins; Melanoma, Experimental; Mice; Monophenol Monooxygenase; Monoterpenes; Oils, Volatile; Oxidative Stress; Plant Oils; Terpenes

2017
Airborne antituberculosis activity of Eucalyptus citriodora essential oil.
    Journal of natural products, 2014, Mar-28, Volume: 77, Issue:3

    The rapid emergence of multi- and extensively drug-resistant tuberculosis (MDR/XDR-TB) has created a pressing public health problem, which mostly affects regions with HIV/AIDS prevalence and represents a new constraint in the already challenging disease management of tuberculosis (TB). The present work responds to the need to reduce the number of contagious MDR/XRD-TB patients, protect their immediate environment, and interrupt the rapid spread by laying the groundwork for an inhalation therapy based on anti-TB-active constituents of the essential oil (EO) of Eucalyptus citriodora. In order to address the metabolomic complexity of EO constituents and active principles in botanicals, this study applied biochemometrics, a 3-D analytical approach that involves high-resolution CCC fractionation, GC-MS analysis, bioactivity measurements, and chemometric analysis. Thus, 32 airborne anti-TB-active compounds were identified in E. citriodora EO: the monoterpenes citronellol (1), linalool (3), isopulegol (5), and α-terpineol (7) and the sesquiterpenoids spathulenol (11), β-eudesmol (23), and τ-cadinol (25). The impact of the interaction of multiple components in EOs was studied using various artificial mixtures (AMxs) of the active monoterpenes 1, 2, and 5 and the inactive eucalyptol (33). Both neat 1 and the AMx containing 1, 2, and 33 showed airborne TB inhibition of >90%, while the major E. citriodora EO component, 2, was only weakly active, at 18% inhibition.

    Topics: Acyclic Monoterpenes; Antitubercular Agents; Cyclohexane Monoterpenes; Cyclohexanols; Cyclohexenes; Databases, Factual; Eucalyptol; Eucalyptus; Female; Gas Chromatography-Mass Spectrometry; Humans; Male; Molecular Structure; Monoterpenes; Oils, Volatile; Plant Leaves; Sesquiterpenes, Eudesmane; Tuberculosis; Tuberculosis, Multidrug-Resistant

2014