violaxanthin has been researched along with diadinoxanthin* in 9 studies
1 review(s) available for violaxanthin and diadinoxanthin
Article | Year |
---|---|
Regulation and function of xanthophyll cycle-dependent photoprotection in algae.
The xanthophyll cycle represents one of the important photoprotection mechanisms in plant cells. In the present review, we summarize current knowledge about the violaxanthin cycle of vascular plants, green and brown algae, and the diadinoxanthin cycle of the algal classes Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. We address the biochemistry of the xanthophyll cycle enzymes with a special focus on protein structure, co-substrate requirements and regulation of enzyme activity. We present recent ideas regarding the structural basis of xanthophyll cycle-dependent photoprotection, including different models for the mechanism of non-photochemical quenching of chlorophyll a fluorescence. In a dedicated chapter, we also describe the unique violaxanthin antheraxanthin cycle of the Prasinophyceae, together with its implication for the mechanism of xanthophyll cycle-dependent heat dissipation. The interaction between the diadinoxanthin cycle and alternative electron flow pathways in the chloroplasts of diatoms is an additional topic of this review, and in the last chapter we cover aspects of the importance of xanthophyll cycle-dependent photoprotection for different algal species in their natural environments. Topics: Chlorophyta; Environment; Eukaryota; Light; Phaeophyceae; Xanthophylls | 2010 |
8 other study(ies) available for violaxanthin and diadinoxanthin
Article | Year |
---|---|
The effect of different light regimes on pigments in Coscinodiscus granii.
The influence of six different light regimes throughout the photosynthetically active radiation range (from 400 to 700 nm, including blue, green, yellow, red-orange, red, and white) at two intensities (100 and 300 µmol photons m Topics: beta Carotene; Chlorophyll; Diatoms; Light; Photosynthesis; Pigments, Biological; Xanthophylls; Zeaxanthins | 2019 |
Violaxanthin conversion by recombinant diatom and plant de-epoxidases, expressed in Escherichia coli - comparative analysis.
The purpose of this research was to obtain recombinant violaxanthin de-epoxidases (VDEs) from two species. The first one was VDE of Arabidopsis thaliana (L.) Heynh. (WT Columbia strain) (AtVDE) which in vivo catalyzes conversion of violaxanthin (Vx) to zeaxanthin (Zx) via anteraxanthin (Ax). The second one was VDE of Phaeodactylum tricornutum Bohlin, 1897 (CCAP 1055/1 strain) (PtVDE) which is responsible for de-epoxidation of diadinoxanthin (Ddx) to diatoxanthin (Dtx). As the first step of our experiments, open reading frames coding for studied enzymes were amplified and subsequently cloned into pET-15b plasmid. For recombinant proteins production Escherichia coli Origami b strain was used. The molecular weight of the produced enzymes were estimated approximately at 45kDa and 50kDa for AtVDE and PtVDE, respectively. Both enzymes, purified under native conditions by immobilized metal affinity chromatography, displayed comparable activity in assay mixture and converted up to 90% Vx in 10 min in two steps enzymatic de-epoxidation, irrespective of enzyme origin. No statistically significant differences were observed when kinetics of the reactions catalyzed by these enzymes were compared. Putative role of selected amino-acid residues of AtVDE and PtVDE was also considered. The significance of the first time obtained recombinant PtVDE as a useful tool in various comparative investigations of de-epoxidation reactions in main types of xanthophyll cycles existing in nature are also indicated. Topics: Arabidopsis; Codon; Diatoms; Escherichia coli; Kinetics; Open Reading Frames; Oxidoreductases; Phytoplankton; Pigments, Biological; Plasmids; Recombinant Proteins; Xanthophylls | 2019 |
Violaxanthin and diadinoxanthin de-epoxidation in various model lipid systems.
The xanthophyll cycle is an important photoprotective process functioning in plants. One of its forms, the violaxanthin (Vx) cycle, involves interconversion between: Vx, antheraxanthin (Ax) and zeaxanthin (Zx). Another kind of the xanthophyll cycle is the diadinoxanthin (Ddx) cycle in which interconversion between Ddx and diatoxanthin (Dtx) occurs. In this study an information on molecular mechanism and regulation of these two types of the xanthophyll cycle is presented. The influence of lipids on the de-epoxidation of the xanthophyll cycle pigments was investigated, with special focus put on the significance of physical properties of the aggregates formed by inverted lipid micelles, which are necessary for activity of the xanthophyll cycle enzymes. In particular, thickness of the hydrophobic fraction of the aggregates, size of the inverted micelles, suggested by mathematical description of the structures and solubility of Vx and Ddx in various kind of lipids were studied. Obtained results show that the rate of de-epoxidation is strongly dependent on the physicochemical properties of the lipids used. The key role for enzyme activation play non-bilayer lipids and the parameters of inverted micelles such as thickness, fluidity of hydrophobic core and their diameter. The presented results show that MGDG and other non-lamellar lipids like different forms of phosphatidylethanolamine are necessary for the Vx and Ddx de-epoxidation because they provide the three-dimensional structures, which are needed for the binding of de-epoxidases and for the accessibility of Vx and Ddx to these enzymes. Topics: Micelles; Oxidoreductases; Structure-Activity Relationship; Xanthophylls | 2012 |
Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum.
The biosynthesis pathway to diadinoxanthin and fucoxanthin was elucidated in Phaeodactylum tricornutum by a combined approach involving metabolite analysis identification of gene function. For the initial steps leading to β-carotene, putative genes were selected from the genomic database and the function of several of them identified by genetic pathway complementation in Escherichia coli. They included genes encoding a phytoene synthase, a phytoene desaturase, a ζ-carotene desaturase, and a lycopene β-cyclase. Intermediates of the pathway beyond β-carotene, present in trace amounts, were separated by TLC and identified as violaxanthin and neoxanthin in the enriched fraction. Neoxanthin is a branching point for the synthesis of both diadinoxanthin and fucoxanthin and the mechanisms for their formation were proposed. A single isomerization of one of the allenic double bounds in neoxanthin yields diadinoxanhin. Two reactions, hydroxylation at C8 in combination with a keto-enol tautomerization and acetylation of the 3'-HO group results in the formation of fucoxanthin. Topics: beta Carotene; Biosynthetic Pathways; Carotenoids; Diatoms; Escherichia coli; Genetic Complementation Test; Geranylgeranyl-Diphosphate Geranylgeranyltransferase; Intramolecular Lyases; Oxidoreductases; Phylogeny; Xanthophylls; zeta Carotene | 2012 |
Utilizing the effective xanthophyll cycle for blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the snow surface.
Snow algae inhabit unique environments such as alpine and high latitudes, and can grow and bloom with visualizing on snow or glacier during spring-summer. The chrysophytes Ochromonas smithii and Ochromonas itoi are dominant in yellow-colored snow patches in mountainous heavy snow areas from late May to early June. It is considered to be effective utilizing the xanthophyll cycle and holding sunscreen pigments as protective system for snow algae blooming in the vulnerable environment such as low temperature and nutrients, and strong light, however the study on the photoprotection of chrysophytes snow algae has not been shown. To dissolve how the chrysophytes snow algae can grow and bloom under such an extreme environment, we studied with the object of light which is one point of significance to this problem. We collected the yellow snows and measured photosynthetically active radiation at Mt. Gassan in May 2008 when the bloom occurred, then tried to establish unialgal cultures of O. smithii and O. itoi, and examined their photosynthetic properties by a PAM chlorophyll fluorometer and analyzed the pigment compositions before and after illumination with high-light intensities to investigate the working xanthophyll cycle. This experimental study using unialgal cultures revealed that both O. smithii and O. itoi utilize only the efficient violaxanthin cycle for photoprotection as a dissipation system of surplus energy under prolonged high-light stress, although they possess chlorophyll c with diadinoxanthin. Topics: Chrysophyta; Cold Temperature; Eutrophication; Light; Models, Biological; Ochromonas; Photosynthesis; Snow; Xanthophylls | 2011 |
Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation.
In this study, we have examined the influence of different lipids on the solubility of the xanthophyll cycle pigments diadinoxanthin (Ddx) and violaxanthin (Vx) and on the efficiency of Ddx and Vx de-epoxidation by the enzymes Vx de-epoxidase (VDE) from wheat and Ddx de-epoxidase (DDE) from the diatom Cyclotella meneghiniana, respectively. Our results show that the lipids MGDG and PE are able to solubilize both xanthophyll cycle pigments in an aqueous medium. Substrate solubilization is essential for de-epoxidase activity, because in the absence of MGDG or PE Ddx and Vx are present in an aggregated form, with limited accessibility for DDE and VDE. Our results also show that the hexagonal structure-forming lipids MGDG and PE are able to solubilize Ddx and Vx at much lower lipid concentrations than bilayer-forming lipids DGDG and PC. We furthermore found that, in the presence of MGDG or PE, Ddx is much more solubilizable than Vx. This substantial difference in Ddx and Vx solubility directly affects the respective de-epoxidation reactions. Ddx de-epoxidation by the diatom DDE is saturated at much lower MGDG or PE concentrations than Vx de-epoxidation by the higher-plant VDE. Another important result of our study is that bilayer-forming lipids DGDG and PC are not able to induce efficient xanthophyll de-epoxidation. Even in the presence of high concentrations of DGDG or PC, where Ddx and Vx are completely solubilized, a strongly inhibited Ddx de-epoxidation is observed, while Vx de-epoxidation by VDE is completely absent. This indicates that the inverted hexagonal phase domains provided by lipid MGDG or PE are essential for de-epoxidase activity. We conclude that in the natural thylakoid membrane MGDG serves to solubilize the xanthophyll cycle pigments and furthermore provides inverted hexagonal structures associated with the membrane bilayer, which are essential for efficient xanthophyll de-epoxidase activity. Topics: beta Carotene; Diatoms; Galactolipids; Lipid Bilayers; Oxidoreductases; Phosphatidylcholines; Phosphatidylethanolamines; Solubility; Substrate Specificity; Xanthophylls | 2005 |
Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model.
Recently, we reported the presence of the violaxanthin-antheraxanthin-zeaxanthin cycle in diatoms, and showed that violaxanthin is the putative precursor of both diadinoxanthin and fucoxanthin in the diatom Phaeodactylum tricornutum Bohlin (M. Lohr and C. Wilhelm, 1999, Proc. Natl. Acad. Sci. USA 96: 8784-8789). In the present study, two possible intermediates in the synthesis of violaxanthin from beta-carotene were identified in P. tricornutum, namely beta-cryptoxanthin and beta-cryptoxanthin epoxide. In low light, the latter pigment prevails, but in high light beta-cryptoxanthin accumulates, probably as the result of an increased activity of the xantophyll-cycle de-epoxidase. The apparent kinetics of several xanthophyll conversion steps were determined for P. tricornutum and Cyclotella meneghiniana Kuitzing. The experimentally determined conversion rates were used to evaluate the hypothetical pathway of xanthophyll synthesis in diatoms. For this purpose a mathematical model was developed which allows the calculation of theoretical rates of pigment conversion for microalgae under steady-state growth conditions. A comparison between measured and calculated conversion rates agreed well with the proposal of a sequential synthesis of fucoxanthin via violaxanthin and diadinoxanthin. The postulation of zeaxanthin as an obligatory intermediate in the synthesis of violaxanthin, however, resulted in large discrepancies between the measured and calculated rates of its epoxidation. Instead of zeaxanthin, beta-cryptoxanthin epoxide may be involved in the biosynthesis of violaxanthin in diatoms. Topics: Antioxidants; beta Carotene; Carotenoids; Chromatography, High Pressure Liquid; Cryptoxanthins; Diatoms; Dithioerythritol; Epoxy Compounds; Herbicides; Light; Lutein; Models, Biological; Pigments, Biological; Pyridazines; Sulfhydryl Reagents; Xanthophylls; Zeaxanthins | 2001 |
Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle.
According to general agreement, all photosynthetic organisms using xanthophyll cycling for photoprotection contain either the violaxanthin (Vx) cycle or the diadinoxanthin (Ddx) cycle instead. Here, we report the temporal accumulation of substantial amounts of pigments of the Vx cycle under prolonged high-light stress in several microalgae thought to possess only the Ddx cycle. In the diatom Phaeodactylum tricornutum, used as a model organism, these pigments also participate in xanthophyll cycling, and their accumulation depends on de novo synthesis of carotenoids and on deepoxidase activity. Furthermore, our data strongly suggest a biosynthetic sequence from Vx via Ddx to fucoxanthin in P. tricornutum. This gives experimental support to the long-stated hypothesis that Vx is a common precursor of all carotenoids with an allenic or acetylenic group, including the main light-harvesting carotenoids in most chlorophyll a/c-containing algae. Thus, another important function for xanthophyll cycling may be to optimize the biosynthesis of light-harvesting xanthophylls under fluctuating light conditions. Topics: beta Carotene; Carotenoids; Cells, Cultured; Chromatography, High Pressure Liquid; Diatoms; Dithiothreitol; Enzyme Inhibitors; Epoxy Compounds; Eukaryota; Kinetics; Light; Lutein; Molecular Structure; Pigments, Biological; Xanthophylls | 1999 |