violaxanthin has been researched along with astaxanthine* in 3 studies
3 other study(ies) available for violaxanthin and astaxanthine
Article | Year |
---|---|
A simple and fast experimental protocol for the extraction of xanthophylls from microalga
Topics: Chlorella; Chromatography, High Pressure Liquid; Microalgae; Microwaves; Solvents; Xanthophylls | 2021 |
Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway.
A terrestrial green microalga was isolated at Ås, in Akershus County, Norway. The strain corresponded to a coccoid chlorophyte. Morphological characteristics by light and electron microscopy, in conjunction with DNA amplification and sequencing of the 18 s rDNA gene and ITS sequences, were used to identify the microalgae. The characteristics agree with those of the genus Coelastrella defined by Chodat, and formed a sister group with the recently described C. thermophila var. globulina. Coelastrella is a relatively small numbered genus that has not been observed in continental Norway before; there are no previous cultures available in collections of Norwegian strains. Gas chromatography analyses of the FAME-derivatives showed a high percentage of polyunsaturated fatty acids (44-45%) especially linolenic acid (C18:3n3; 30-34%). After the stationary phase, the cultures were able to accumulate several carotenoids as neoxanthin, pheophytin a, astaxanthin, canthaxanthin, lutein, and violaxanthin. Due to the scarcity of visual characters suitable for diagnostic purposes and the lack of DNA sequence information, there is a high possibility that species of this genus have been neglected in local environmental studies, even though it showed interesting properties for algal biotechnology. Topics: alpha-Linolenic Acid; Biotechnology; Carotenoids; Chlorophyta; DNA, Ribosomal; Fatty Acids; Microalgae; Norway; Pheophytins; Phylogeny; Pigments, Biological; RNA, Ribosomal, 18S; Species Specificity; Xanthophylls | 2020 |
Isolation and characterization of a lycopene ε-cyclase gene of Chlorella (Chromochloris) zofingiensis. Regulation of the carotenogenic pathway by nitrogen and light.
The isolation and characterization of the lycopene ε-cyclase gene from the green microalga Chlorella (Chromochloris) zofingiensis (Czlcy-e) was performed. This gene is involved in the formation of the carotenoids α-carotene and lutein. Czlcy-e gene encoded a polypeptide of 654 amino acids. A single copy of Czlcy-e was found in C. zofingiensis. Functional analysis by heterologous complementation in Escherichia coli showed the ability of this protein to convert lycopene to δ-carotene. In addition, the regulation of the carotenogenic pathway by light and nitrogen was also studied in C. zofingiensis. High irradiance stress did not increase mRNA levels of neither lycopene β-cyclase gene (lcy-b) nor lycopene ε-cyclase gene (lcy-e) as compared with low irradiance conditions, whereas the transcript levels of psy, pds, chyB and bkt genes were enhanced, nevertheless triggering the synthesis of the secondary carotenoids astaxanthin, canthaxanthin and zeaxanthin and decreasing the levels of the primary carotenoids α-carotene, lutein, violaxanthin and β-carotene. Nitrogen starvation per se enhanced mRNA levels of all genes considered, except lcy-e and pds, but did not trigger the synthesis of astaxanthin, canthaxanthin nor zeaxanthin. The combined effect of both high light and nitrogen starvation stresses enhanced significantly the accumulation of these carotenoids as well as the transcript levels of bkt gene, as compared with the effect of only high irradiance stress. Topics: beta Carotene; Canthaxanthin; Carotenoids; Chlorella; Escherichia coli; Intramolecular Lyases; Light; Lutein; Microalgae; Nitrogen; RNA, Messenger; Stress, Physiological; Transcription, Genetic; Xanthophylls; Zeaxanthins | 2012 |