Page last updated: 2024-08-21

vinblastine and sulfamethoxazole

vinblastine has been researched along with sulfamethoxazole in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (12.50)18.2507
2000's4 (50.00)29.6817
2010's3 (37.50)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Baccanari, DP; Boytos, CM; Caddell, JM; Comley, JC; Friedman, HS; Hunter, RN; Jones, ML; Joyner, SS; Knick, V; Kuyper, LF; Rudolph, SK; Stables, JN; Tansik, RL; Wilson, HR1
Lombardo, F; Obach, RS; Waters, NJ1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Glen, RC; Lowe, R; Mitchell, JB1

Other Studies

8 other study(ies) available for vinblastine and sulfamethoxazole

ArticleYear
High-affinity inhibitors of dihydrofolate reductase: antimicrobial and anticancer activities of 7,8-dialkyl-1,3-diaminopyrrolo[3,2-f]quinazolines with small molecular size.
    Journal of medicinal chemistry, 1996, Feb-16, Volume: 39, Issue:4

    Topics: Animals; Anti-Infective Agents; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Brain Neoplasms; Candidiasis; Cell Division; Cell Line; Crystallography, X-Ray; Drug Design; Drug Resistance, Multiple; Enzyme Inhibitors; Folic Acid Antagonists; Humans; Lung Neoplasms; Magnetic Resonance Spectroscopy; Mass Spectrometry; Mice; Mice, Nude; Mice, SCID; Models, Molecular; Molecular Conformation; Molecular Structure; Molecular Weight; Pneumonia, Pneumocystis; Protein Structure, Secondary; Quinazolines; Structure-Activity Relationship; Toxoplasma; Tumor Cells, Cultured

1996
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Predicting phospholipidosis using machine learning.
    Molecular pharmaceutics, 2010, Oct-04, Volume: 7, Issue:5

    Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine

2010