vibralactone has been researched along with 4-hydroxybenzoic-acid* in 2 studies
2 other study(ies) available for vibralactone and 4-hydroxybenzoic-acid
Article | Year |
---|---|
A flavin-monooxygenase catalyzing oxepinone formation and the complete biosynthesis of vibralactone.
Oxepinone rings represent one of structurally unusual motifs of natural products and the biosynthesis of oxepinones is not fully understood. 1,5-Seco-vibralactone (3) features an oxepinone motif and is a stable metabolite isolated from mycelial cultures of the mushroom Boreostereum vibrans. Cyclization of 3 forms vibralactone (1) whose β-lactone-fused bicyclic core originates from 4-hydroxybenzoate, yet it remains elusive how 4-hydroxybenzoate is converted to 3 especially for the oxepinone ring construction in the biosynthesis of 1. In this work, using activity-guided fractionation together with proteomic analyses, we identify an NADPH/FAD-dependent monooxygenase VibO as the key enzyme performing a crucial ring-expansive oxygenation on the phenol ring to generate the oxepin-2-one structure of 3. The crystal structure of VibO reveals that it forms a dimeric phenol hydroxylase-like architecture featured with a unique substrate-binding pocket adjacent to the bound FAD. Computational modeling and solution studies provide insight into the likely VibO active site geometry, and suggest possible involvement of a flavin-C4a-OO(H) intermediate. Topics: Flavin-Adenine Dinucleotide; Flavins; Lactones; Mixed Function Oxygenases; Proteomics | 2023 |
A Monooxygenase from Boreostereum vibrans Catalyzes Oxidative Decarboxylation in a Divergent Vibralactone Biosynthesis Pathway.
The oxidative decarboxylation of prenyl 4-hydroxybenzoate to prenylhydroquinone has been frequently proposed for the biosynthesis of prenylated (hydro)quinone derivates (sometimes meroterpenoids), yet no corresponding genes or enzymes have so far been reported. A FAD-binding monooxygenase (VibMO1) was identified that converts prenyl 4-hydroxybenzoate into prenylhydroquinone and is likely involved in the biosynthesis of vibralactones and other meroterpenoids in the basidiomycete Boreostereum vibrans. Feeding of 3-allyl-4-hydroxybenzylalcohol, an analogue of the vibralactone pathway intermediate 3-prenyl-4-hydroxybenzylalcohol, generated 20 analogues with different scaffolds. This demonstrated divergent pathways to skeletally distinct compounds initiating from a single precursor, thus providing the first insight into a novel biosynthetic pathway for 3-substituted γ-butyrolactones from a shikimate origin. Topics: Basidiomycota; Biosynthetic Pathways; Decarboxylation; Hydroquinones; Lactones; Mixed Function Oxygenases; Parabens | 2016 |