vermiculite and trimethylchlorosilane

vermiculite has been researched along with trimethylchlorosilane* in 2 studies

Other Studies

2 other study(ies) available for vermiculite and trimethylchlorosilane

ArticleYear
[Surface organic modification of acid vermiculite and its adsorption of hydrophobic micro pollutants in aqueous solutions].
    Huan jing ke xue= Huanjing kexue, 2013, Volume: 34, Issue:7

    To solve the problems of intercalated organoclay such as low surface area and inhomogeneous organic loading, natural vermiculite was activated by acid leaching and then modified by trimethylchlorosilane (CTMS) and triethylchlorosilane (CTES). The modified materials were characterized by FTIR, BET, SEM and TG. Experimental results indicated that the surface area of the modified acid vermiculite (361.0 m2 x g(-1)) was much larger than that of the intercalated organovermiculite (6.0 m2 x g(-1)), moreover, the organic groups were grafted onto the surface covalently. Diethyl phthalate (DEP), a typical hydrophobic micro-organic pollutant, was used to test the adsorption capacity of different adsorbents. The adsorption amounts of DEP were 63.7, 51.2 and 15.7 mg x g(-1) for CTES, CTMS and intercalated organovermiculite in this study, respectively. The high organic affinity of modified acid vermiculite was due to both the bigger surface area and the homogeneous organic loading. The adsorption kinetics was found to follow the pseudosecond-order model. The isotherms exhibited linear characteristics and could be described by Henry and Freundlich equations, indicating that the partition process is the main control mechanism of the removal of DEP.

    Topics: Acids; Adsorption; Aluminum Silicates; Hydrophobic and Hydrophilic Interactions; Organic Chemicals; Phthalic Acids; Trimethylsilyl Compounds; Water Pollutants, Chemical

2013
Preparation of trimethylchlorosilane-modified acid vermiculites for removing diethyl phthalate from water.
    Journal of colloid and interface science, 2012, Mar-01, Volume: 369, Issue:1

    A hybrid organic-inorganic material based on vermiculite was prepared to remove diethyl phthalate (DEP) from aqueous solution. Natural vermiculite was activated with HCl to improve the specific surface area and was then modified by silanization using trimethylchlorosilane. Organovermiculite prepared by ion exchange with hexadecyl trimethylammonium bromide (HDTMAB) was also tested for comparison. The leaching of 2 mol L(-1) HCl at 80°C increased the specific surface area of vermiculite from 14.4 to 500.0m(2)g(-1), and the average pore-diameter was decreased from 7.90 nm to 2.75 nm. Fourier transform infrared spectroscopy (FTIR) spectra indicated that trimethysilyl groups were grafted covalently on the surface of acid vermiculites. The specific surface area of trimethylchlorosilane-modified acid vermiculites (TMAVs) (355.4 m(2) g(-1)) was much larger than that of organovermiculite (6.0 m(2) g(-1)). The isotherm adsorption experiments of DEP showed that TMAVs exhibited linear isotherms, suggesting that the uptake of DEP was controlled by partitioning mechanism. The maximal partition coefficient (K(d)) of TMAVs was 3.1 times higher than that of organovermiculite, implying that TMAVs had stronger organic affinity than organovermiculite. The results demonstrate that the adsorption capacity and mechanism of organoclays were controlled by the specific surface area and organic loading, whereas the length of alkyl chain of organic modifier was not the key factor.

    Topics: Adsorption; Aluminum Silicates; Phthalic Acids; Trimethylsilyl Compounds; Water; Water Pollutants, Chemical

2012