vermiculite has been researched along with mica* in 2 studies
2 other study(ies) available for vermiculite and mica
Article | Year |
---|---|
Unraveling the size distributions of surface properties for purple soil and yellow soil.
Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges (i.e. >10, 1-10, 0.5-1, 0.2-0.5 and <0.2 μm) for a purple soil (Entisol) and a yellow soil (Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction. We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles (<1 μm), and almost half of the specific surface area and surface charge came from the smallest particles (<0.2 μm). Vermiculite, illite, montmorillonite and mica dominated in the colloidal-sized particles, of which the smallest particles had the highest proportion of vermiculite and montmorillonite. For a given size fraction, the purple soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy. Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the <0.2 μm nanoparticles made the largest contribution to soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties. Topics: Aluminum Silicates; Bentonite; Colloids; Environmental Monitoring; Particle Size; Soil; Static Electricity; Surface Properties; X-Ray Diffraction | 2015 |
Uptake of cesium and strontium ions by artificially altered phlogopite.
Potassium (K(+)) phlogopite was transformed to a vermiculite-like mineral through a topotactic reaction under acidic conditions (pH 2) followed by hydrothermal treatment with Na(+), Mg(2+), Ca(2+), and Al(3+) cations. The resulting Na(+)-, Mg(2+)-, Ca(2+)-, and Al(3+)-altered phlogopites (Phl) denoted as Na-Phl, Mg-Phl, Ca-Phl, and Al-Phl, respectively. Na-Phl, Mg-Phl, and Ca-Phl all exhibited the same high adsorption capacity as natural vermiculite and the absorption of Cs(+) and Sr(2+) ions on these materials followed the Langmuir model. High-angle annular dark-field scanning transmission electron microscopy showed that Cs(+) ions in the Mg-Phl layers were intercalated deep within the crystal structure, along specific interlayer regions. These adsorbed anhydrous Cs(+) ions were firmly fixed at the centers of hexagonal rings positioned simultaneously in the upper and lower tetrahedral silicate sheets, whereas Sr(2+) ions adsorb into the interlayer in the hydrous state. Al-Phl formed a hydroxyl-interlayered vermiculite and demonstrated significant selectivity for Cs(+) at very low concentrations of the isotope. Consequently, the artificially altered phlogopites prepared in this study showed controllable and versatile adsorption capabilities making them significantly more suitable than natural vermiculite for Cs and Sr decontamination. Topics: Adsorption; Aluminum Silicates; Cesium; Hydroxylation; Ions; Silicates; Spectrophotometry, Atomic; Strontium; X-Ray Diffraction | 2014 |