verlukast has been researched along with montelukast* in 3 studies
3 other study(ies) available for verlukast and montelukast
Article | Year |
---|---|
Montelukast is a potent and durable inhibitor of multidrug resistance protein 2-mediated efflux of taxol and saquinavir.
The ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of human immunodeficiency virus-1 (HIV-1) protease inhibitors (HPIs), e.g. saquinavir. Increased expression of several ABC-transporters, especially P-glycoprotein (P-gp) and multidrug resistance protein 2 (MRP2), are observed in multidrug resistant (MDR) tumor cells and on HIV-1 infected lymphocytes. In addition, due to their apical expression on vascular endothelial barriers, both P-gp and MRP2 are of crucial importance towards dictating drug access into sequestered tissues. However, although a number of P-gp inhibitors are currently in clinical trials, possible inhibitors of MRP2 are not being thoroughly investigated. The experimental leukotriene receptor antagonist (LTRA), MK-571 is known to be a potent inhibitor of MRP transporters. Using the MRP2 over-expressing Madin-Darby canine kidney cell line, MDCKII-MRP2, we evaluated whether the clinically approved LTRAs, e.g. montelukast (Singulair) and zafirlukast (Accolate), can similarly suppress MRP2-mediated efflux. We compared the efficacy of increasing concentrations (20-100 microM) of MK-571, montelukast, and zafirlukast, in suppressing the efflux of calcein-AM, a fluorescent MRP substrate, and the radiolabeled [(3)H-] drugs, taxol and saquinavir. Montelukast was the most potent inhibitor (p<0.01) of MRP2-mediated efflux of all three substrates. Montelukast also increased (p<0.01) the duration of intracellular retention of both taxol and saquinavir. More than 50% of the drugs were retained in cells even after 90 min post removal of montelukast from the medium. Our findings implicate that montelukast, a relatively safe anti-asthmatic agent, may be used as an adjunct therapy to suppress the efflux of taxol and saquinavir from MRP2 overexpressing cells. Topics: Acetates; Animals; Anti-Asthmatic Agents; Antineoplastic Agents, Phytogenic; Biological Transport; Cell Line; Chemotherapy, Adjuvant; Cyclopropanes; Dogs; Drug Resistance, Neoplasm; Drug Resistance, Viral; Fluoresceins; HIV Infections; HIV Protease Inhibitors; Indoles; Leukotriene Antagonists; Multidrug Resistance-Associated Proteins; Neoplasms; Paclitaxel; Phenylcarbamates; Propionates; Quinolines; Saquinavir; Sulfides; Sulfonamides; Time Factors; Tosyl Compounds | 2009 |
Cysteinyl leukotrienes synergize with growth factors to induce proliferation of human bronchial fibroblasts.
Cysteinyl leukotrienes (cys-LTs) are potent asthma-related mediators that function through their G protein-coupled receptors, cys-LT receptor type 1 (CysLT1R) and cys-LT receptor type 2 (CysLT2R).. Because many G protein-coupled receptors transactivate the epidermal growth factor receptor (EGFR) through metalloprotease-mediated ligand shedding, we investigated the effects of cys-LTs on signal transduction and proliferation of bronchial fibroblasts.. Human bronchial fibroblasts were grown from biopsy specimens of healthy subjects. Mitogenesis was assessed on the basis of tritiated methylthymidine incorporation.. Leukotriene (LT) D(4) alone did not increase mitogenesis but dose-dependently increased thymidine incorporation and cell proliferation in the presence of epidermal growth factor (EGF). The enhancement was not prevented by CysLT1R antagonists (MK-571 and montelukast) or by a dual antagonist (BAY u9773), which is consistent with the lack of detectable mRNA for CysLT1R and CysLT2R in bronchial fibroblasts. LTD(4) did not cause EGFR transphosphorylation nor was the synergism blocked by the metalloprotease inhibitor GM6001. The EGFR-selective kinase inhibitor AG1478 suppressed the synergy between LTD(4) and EGF but had no effect on synergistic interactions of LTD(4) with other receptor tyrosine kinase growth factors. The effect of LTD(4) involved a pertussis toxin-sensitive and protein kinase C-mediated intracellular pathway, leading to sustained growth factor-dependent phosphorylation of extracellular signal-regulated kinase 1/2 and protein kinase B (PKB/Akt).. Cys-LTs do not transactivate EGFR but have a broader capability to synergize with receptor tyrosine kinase pathways.. This study implies a critical role of cys-LTs in airway fibrosis in asthma and other chronic airway diseases, which might not be blocked by therapy with current LT receptor antagonists. Topics: Acetates; Bronchi; Cell Proliferation; Cells, Cultured; Cyclopropanes; ErbB Receptors; Fibroblasts; Humans; Intercellular Signaling Peptides and Proteins; Leukotriene C4; Leukotriene D4; Membrane Proteins; Propionates; Protein Serine-Threonine Kinases; Quinolines; Receptors, Leukotriene; RNA, Messenger; SRS-A; Sulfides | 2007 |
Inverse agonist activity of selected ligands of the cysteinyl-leukotriene receptor 1.
Cysteinyl leukotrienes (CysLTs) are associated with several inflammatory processes, including asthma. Due to this association, considerable effort has been invested in the development of antagonists to the CysLT receptors (CysLT(1)R). Many of these molecules have been shown to specifically interact with CysLT(1)R, but little is known about their impact on the conformation of the receptor and its activity. We were especially interested in possible inverse agonist activity of the antagonists. Using a constitutively active mutant (N106A) of the human CysLT(1)R and the wild-type (WT) receptor coexpressed with the G(alphaq) subunit of the trimeric G protein, we were able to address this issue with ligands commonly used in therapy. We demonstrated that some of these molecules are inverse agonists, whereas others act as partial agonists. In cells expressing the CysLT(1)R mutant N106A exposed to Montelukast, Zafirlukast, or 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), the basal inositol phosphate production was reduced by 53 +/- 6, 44 +/- 3, and 54 +/- 4%, respectively. On the other hand, 6(R)-(4-carboxyphenylthio)-5(S)-hydroxy-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid (BayU9773) and 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazole-5-YL)-butoxy]-phenyl ethanone] (LY171883) acted as partial agonists and alpha-pentyl-3-[2-quinolinylmethoxy] benzyl alcohol (REV 5901) as a neutral antagonist. However, in cells expressing CysLT(1)R and G(alphaq), all antagonists used had inverse agonist activity. The decrease in basal inositol phosphate production by ligands with inverse agonist activity could be inhibited by a more neutral antagonist, confirming the specificity of the reaction. We demonstrate here that Montelukast, MK571, and Zafirlukast can act as inverse agonists on the human CysLT(1) receptor. Topics: Acetates; Animals; Chlorocebus aethiops; COS Cells; Cyclopropanes; GTP-Binding Proteins; Humans; Indoles; Leukotriene Antagonists; Membrane Proteins; Phenylcarbamates; Propionates; Quinolines; Radioligand Assay; Receptors, Leukotriene; Sulfides; Sulfonamides; Tosyl Compounds; Transfection | 2004 |