verapamil and rolipram

verapamil has been researched along with rolipram in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19901 (16.67)18.7374
1990's1 (16.67)18.2507
2000's0 (0.00)29.6817
2010's3 (50.00)24.3611
2020's1 (16.67)2.80

Authors

AuthorsStudies
Creveling, CR; Daly, JW; Lewandowski, GA; McNeal, ET1
An, B; Hu, J; Huang, L; Li, X; Li, Z; Pan, T1
Balliano, TL; Barbosa, G; Carvalho, VF; da Silva, BA; de Souza, ET; Lima, LM; Martins, IRR; Martins, MA; Medeiros, MM; Moraes Junior, MO; Nunes, IKDC; Silva, PMR; Silva, SWD1
Aardal, S; Helle, KB; Lillestłl, IK1
Gilani, AH; Shah, AJ1
Campos-Toimil, M; Cuíñas, A; Elíes, J; Orallo, F1

Other Studies

6 other study(ies) available for verapamil and rolipram

ArticleYear
[3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
    Journal of medicinal chemistry, 1985, Volume: 28, Issue:3

    Topics: Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Anesthetics, Local; Animals; Batrachotoxins; Calcium Channel Blockers; Cyclic AMP; Guinea Pigs; Histamine H1 Antagonists; In Vitro Techniques; Ion Channels; Neurotoxins; Sodium; Tranquilizing Agents; Tritium

1985
Synthesis and evaluation of clioquinol-rolipram/roflumilast hybrids as multitarget-directed ligands for the treatment of Alzheimer's disease.
    European journal of medicinal chemistry, 2019, Feb-01, Volume: 163

    Topics: Alzheimer Disease; Aminopyridines; Animals; Benzamides; Clioquinol; Cyclic Nucleotide Phosphodiesterases, Type 4; Cyclopropanes; Drug Design; Humans; Ligands; Mice; Rats; Rolipram

2019
Discovery of sulfonyl hydrazone derivative as a new selective PDE4A and PDE4D inhibitor by lead-optimization approach on the prototype LASSBio-448: In vitro and in vivo preclinical studies.
    European journal of medicinal chemistry, 2020, Oct-15, Volume: 204

    Topics: Animals; Cyclic AMP; Cyclic Nucleotide Phosphodiesterases, Type 4; Drug Design; Enzyme Inhibitors; Humans; Hydrazones; Hypersensitivity; Lung; Male; Mice

2020
Relaxing effects of cyclic GMP and cyclic AMP-enhancing agents on the long-lasting contraction to endothelin-1 in the porcine coronary artery.
    Scandinavian journal of clinical and laboratory investigation, 1998, Volume: 58, Issue:8

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Atrial Natriuretic Factor; Caffeine; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Colforsin; Coronary Vessels; Cyclic AMP; Cyclic GMP; Dose-Response Relationship, Drug; Endothelin-1; In Vitro Techniques; Isradipine; Milrinone; Muscle, Smooth, Vascular; Papaverine; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Purinones; Pyrrolidinones; Rolipram; Swine; Vasoactive Intestinal Peptide; Vasoconstriction; Vasodilation; Verapamil; Vinca Alkaloids

1998
Bronchodilatory effect of Acorus calamus (Linn.) is mediated through multiple pathways.
    Journal of ethnopharmacology, 2010, Sep-15, Volume: 131, Issue:2

    Topics: Acorus; Animals; Atropine; Bronchodilator Agents; Calcium Channel Blockers; Carbachol; Female; Guinea Pigs; Isoproterenol; Male; Muscle Contraction; Muscle, Smooth; Papaverine; Phosphodiesterase 4 Inhibitors; Plant Extracts; Potassium; Rhizome; Rolipram; Trachea; Verapamil

2010
Cyclic AMP relaxation of rat aortic smooth muscle is mediated in part by decrease of depletion of intracellular Ca(2+) stores and inhibition of capacitative calcium entry.
    Vascular pharmacology, 2013, Volume: 58, Issue:1-2

    Topics: Animals; Aorta, Thoracic; Calcium; Colforsin; Cyclic AMP; Imidazoles; Male; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Nifedipine; p38 Mitogen-Activated Protein Kinases; Phenylephrine; Phosphodiesterase 4 Inhibitors; Pyridines; Rats; Rats, Inbred WKY; Rolipram; Vasodilation; Vasodilator Agents; Verapamil

2013