verapamil has been researched along with quinapril in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (33.33) | 18.2507 |
2000's | 1 (11.11) | 29.6817 |
2010's | 5 (55.56) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Freiwald, S; Jiang, Y; Jones, JP; Kaspera, R; Katayama, J; Lee, CA; Smith, E; Totah, RA; Walker, GS | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Beaulieu, M; Cléroux, J; Kouamé, N; Lacourcière, Y | 1 |
Beaulieu, M; Cléroux, J; Lacourcière, Y; Lemieux, SC | 1 |
White, WB | 1 |
2 review(s) available for verapamil and quinapril
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
A chronotherapeutic approach to the management of hypertension.
Topics: Antihypertensive Agents; Blood Pressure; Circadian Rhythm; Humans; Hypertension; Isoquinolines; Quinapril; Tetrahydroisoquinolines; Verapamil | 1996 |
2 trial(s) available for verapamil and quinapril
Article | Year |
---|---|
Comparative effects of quinapril, atenolol, and verapamil on blood pressure and forearm hemodynamics during handgrip exercise.
Topics: Angiotensin-Converting Enzyme Inhibitors; Atenolol; Blood Pressure; Cross-Over Studies; Double-Blind Method; Exercise; Forearm; Heart Rate; Humans; Hypertension; Isoquinolines; Middle Aged; Quinapril; Tetrahydroisoquinolines; Vascular Resistance; Verapamil | 1994 |
Effects of quinapril and verapamil versus atenolol on blood pressure during dynamic leg exercise.
Topics: Angiotensin-Converting Enzyme Inhibitors; Atenolol; Blood Pressure; Double-Blind Method; Exercise; Humans; Hypertension; Isoquinolines; Leg; Middle Aged; Quinapril; Tetrahydroisoquinolines; Verapamil | 1993 |
5 other study(ies) available for verapamil and quinapril
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Identifying a selective substrate and inhibitor pair for the evaluation of CYP2J2 activity.
Topics: Amiodarone; Astemizole; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP2J2; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Danazol; Drug Discovery; Drug Interactions; Enzyme Inhibitors; Humans; Hydroxylation; In Vitro Techniques; Methylation; Microsomes, Liver; Models, Biological; Molecular Structure; Substrate Specificity; Tandem Mass Spectrometry; Terfenadine | 2012 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |