verapamil and niacin

verapamil has been researched along with niacin in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19901 (11.11)18.7374
1990's1 (11.11)18.2507
2000's1 (11.11)29.6817
2010's6 (66.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Nezu, JI; Ohashi, R; Oku, A; Sai, Y; Shimane, M; Tamai, I; Tsuji, A; Yabuuchi, H1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Campillo, NE; Guerra, A; Páez, JA1
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V1
Bellman, K; Knegtel, RM; Settimo, L1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Balazs, T; Ehrreich, SJ; el-Hage, AN; Johnson, GL1
Stewart, BH; Whitfield, LR; Wu, X1
Catterall, WA; Gamal El-Din, TM; Pryde, DC; Scheuer, T; Swanson, TM; Tang, L; Zheng, N1

Reviews

1 review(s) available for verapamil and niacin

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

8 other study(ies) available for verapamil and niacin

ArticleYear
Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 291, Issue:2

    Topics: Biological Transport, Active; Carnitine; Carrier Proteins; Cations; Cells, Cultured; Dose-Response Relationship, Drug; Embryo, Mammalian; Humans; Hydrogen-Ion Concentration; Kidney; Membrane Proteins; Organic Cation Transport Proteins; Sodium; Solute Carrier Family 22 Member 5; Stereoisomerism

1999
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:3

    Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2010
FDA-approved drug labeling for the study of drug-induced liver injury.
    Drug discovery today, 2011, Volume: 16, Issue:15-16

    Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration

2011
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
    Pharmaceutical research, 2014, Volume: 31, Issue:4

    Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation

2014
Effects of antiarrhythmic agents on isoproterenol-induced ventricular fibrillation in heavy rats: a possible model of sudden cardiac death.
    Research communications in chemical pathology and pharmacology, 1986, Volume: 51, Issue:3

    Topics: Animals; Anti-Arrhythmia Agents; Body Weight; Bretylium Tosylate; Death, Sudden; Disease Models, Animal; Electrocardiography; Isoproterenol; Male; Niacin; Phenytoin; Procainamide; Propranolol; Quaternary Ammonium Compounds; Quinidine; Rats; Ventricular Fibrillation; Verapamil

1986
Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.
    Pharmaceutical research, 2000, Volume: 17, Issue:2

    Topics: Acetic Acid; Anion Transport Proteins; Antineoplastic Agents, Phytogenic; Atorvastatin; ATP Binding Cassette Transporter, Subfamily B, Member 1; Benzoic Acid; Biological Transport; Caco-2 Cells; Calcium Channel Blockers; Carbon Radioisotopes; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Carboxylic Acids; Carrier Proteins; Cell Polarity; Cyclosporine; Drug Interactions; Heptanoic Acids; Humans; Hydrogen-Ion Concentration; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Immunosuppressive Agents; Indicators and Reagents; Ionophores; Niacin; Protons; Pyrroles; Verapamil; Vinblastine

2000
Structural basis for inhibition of a voltage-gated Ca
    Nature, 2016, 09-01, Volume: 537, Issue:7618

    Topics: Allosteric Regulation; Amines; Amlodipine; Animals; Bacterial Proteins; Binding Sites; Calcium; Calcium Channel Blockers; Calcium Channels; Cell Line; Crystallography, X-Ray; Dihydropyridines; Lipids; Models, Molecular; Moths; Mutation; Niacin; Protein Subunits; Verapamil

2016