verapamil and methimazole

verapamil has been researched along with methimazole in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19901 (11.11)18.7374
1990's0 (0.00)18.2507
2000's3 (33.33)29.6817
2010's5 (55.56)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Dansette, PM; Fontana, E; Poli, SM1
Lombardo, F; Obach, RS; Waters, NJ1
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Banerjee, RK; Bhattacharjee, M; Bose, AK1

Reviews

2 review(s) available for verapamil and methimazole

ArticleYear
Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity.
    Current drug metabolism, 2005, Volume: 6, Issue:5

    Topics: Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Interactions; Enzyme Inhibitors; Humans; Isoenzymes; Structure-Activity Relationship; Terminology as Topic

2005
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

7 other study(ies) available for verapamil and methimazole

ArticleYear
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
FDA-approved drug labeling for the study of drug-induced liver injury.
    Drug discovery today, 2011, Volume: 16, Issue:15-16

    Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration

2011
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Histamine H2-receptor mediated stimulation of gastric acid secretion by mercaptomethylimidazole.
    Biochemical pharmacology, 1989, Mar-15, Volume: 38, Issue:6

    Topics: Animals; Cimetidine; Gastric Acid; Male; Methimazole; Mice; Mice, Inbred BALB C; Nifedipine; Omeprazole; Parietal Cells, Gastric; Potassium; Proton-Translocating ATPases; Pylorus; Receptors, Histamine H2; Sodium; Verapamil

1989