verapamil and memantine

verapamil has been researched along with memantine in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (33.33)29.6817
2010's3 (50.00)24.3611
2020's1 (16.67)2.80

Authors

AuthorsStudies
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J1
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Andrisano, V; Barniol-Xicota, M; Bartolini, M; De Simone, A; Espargaró, A; Muñoz-Torrero, D; Pérez, B; Pérez-Areales, FJ; Pivetta, D; Pont, C; Sabate, R; Sureda, FX; Turcu, AL; Vázquez, S1
Brea, JM; Companys-Alemany, J; Griñán-Ferré, C; Johnson, JW; Kurnikova, MG; Loza, MI; Pallàs, M; Patel, DS; Pérez, B; Phillips, MB; Soto, D; Sureda, FX; Turcu, AL; Vázquez, S1

Reviews

1 review(s) available for verapamil and memantine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

5 other study(ies) available for verapamil and memantine

ArticleYear
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
    Journal of medicinal chemistry, 2008, Jan-24, Volume: 51, Issue:2

    Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase

2008
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors.
    European journal of medicinal chemistry, 2019, Oct-15, Volume: 180

    Topics: Acetylcholinesterase; Adamantane; Alzheimer Disease; Butyrylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Neuroprotective Agents; Receptors, N-Methyl-D-Aspartate; Structure-Activity Relationship; Tacrine

2019
Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer's disease.
    European journal of medicinal chemistry, 2022, Jun-05, Volume: 236

    Topics: Alzheimer Disease; Animals; Caenorhabditis elegans; Disease Models, Animal; Memantine; Mice; Receptors, N-Methyl-D-Aspartate

2022