verapamil has been researched along with griseofulvin in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (10.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (30.00) | 29.6817 |
2010's | 6 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Chen, L; He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Wang, Y; Zhang, W | 1 |
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Avdeef, A; Tam, KY | 1 |
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K | 1 |
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V | 1 |
Barber, S; Dew, TP; Farrell, TL; Poquet, L; Williamson, G | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Barlow, SB; Cabral, F; Schibler, MJ | 1 |
1 review(s) available for verapamil and griseofulvin
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
9 other study(ies) available for verapamil and griseofulvin
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data.
Topics: Blood Proteins; Chemistry, Physical; Computer Simulation; Humans; Membranes, Artificial; Models, Biological; Pharmaceutical Preparations; Protein Binding; Tissue Distribution | 2009 |
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
How well can the Caco-2/Madin-Darby canine kidney models predict effective human jejunal permeability?
Topics: Animals; Disease Models, Animal; Dogs; Humans; Jejunal Diseases; Kidney Diseases; Models, Biological; Permeability; Porosity; Regression Analysis | 2010 |
QSAR-based permeability model for drug-like compounds.
Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2011 |
FDA-approved drug labeling for the study of drug-induced liver injury.
Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration | 2011 |
Predicting phenolic acid absorption in Caco-2 cells: a theoretical permeability model and mechanistic study.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Cinnamates; Enterocytes; Humans; Hydrophobic and Hydrophilic Interactions; Intestinal Absorption; Kinetics; Models, Biological; Molecular Conformation; Osmolar Concentration; Phenols | 2012 |
Elimination of permeability mutants from selections for drug resistance in mammalian cells.
Topics: Alkaloids; Animals; Cell Line; Cell Membrane Permeability; Colchicine; Cricetinae; Drug Resistance; Griseofulvin; In Vitro Techniques; Microtubules; Paclitaxel; Selection, Genetic; Tubulin; Verapamil; Vinblastine | 1989 |