verapamil and amprenavir

verapamil has been researched along with amprenavir in 15 studies

Research

Studies (15)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (6.67)18.2507
2000's5 (33.33)29.6817
2010's8 (53.33)24.3611
2020's1 (6.67)2.80

Authors

AuthorsStudies
Daily, JP; Fahey, JM; Greenblatt, DJ; Perloff, MD; von Moltke, LL1
Huang, L; Humphreys, JE; Morgan, JB; Polli, JW; Serabjit-Singh, CS; Webster, LO; Wring, SA1
Dansette, PM; Fontana, E; Poli, SM1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Chen, X; Lin, X; Skolnik, S; Wang, J1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Artursson, P; Mateus, A; Matsson, P1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Esaki, T; Kawashima, H; Komura, H; Kuroda, M; Mizuguchi, K; Natsume-Kitatani, Y; Ohashi, R; Watanabe, R1
Bridgers, A; Coffin, M; Long, S; Polli, J; Roy, A; Vickers, A; Winnike, R; Yu, L1
Blom-Roosemalen, MC; Breimer, DD; de Boer, AG; Nabulsi, L; van der Sandt, IC; Voorwinden, HH; Vos, CM1
Bui, T; Ho, RJ; Hsiao, P; Unadkat, JD1
Annaert, P; Augustijns, P; Brouwers, J; Mols, R1

Reviews

2 review(s) available for verapamil and amprenavir

ArticleYear
Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity.
    Current drug metabolism, 2005, Volume: 6, Issue:5

    Topics: Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Interactions; Enzyme Inhibitors; Humans; Isoenzymes; Structure-Activity Relationship; Terminology as Topic

2005
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

13 other study(ies) available for verapamil and amprenavir

ArticleYear
Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture.
    AIDS (London, England), 2000, Jun-16, Volume: 14, Issue:9

    Topics: Adenocarcinoma; ATP Binding Cassette Transporter, Subfamily B, Member 1; Carbamates; Cell Line, Transformed; Colonic Neoplasms; Drug Resistance, Multiple; Furans; Gene Expression Regulation, Neoplastic; HIV Protease Inhibitors; Humans; Indinavir; Ivermectin; Nelfinavir; Ritonavir; Saquinavir; Sulfonamides; Tumor Cells, Cultured; Verapamil; Vinblastine

2000
Rational use of in vitro P-glycoprotein assays in drug discovery.
    The Journal of pharmacology and experimental therapeutics, 2001, Volume: 299, Issue:2

    Topics: Adenosine Triphosphatases; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cells, Cultured; Chromatography, Liquid; Enzyme Inhibitors; Fluoresceins; Fluorescent Dyes; Humans; Mass Spectrometry; Pharmacology; Spodoptera

2001
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:2

    Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Sub-Family B Member 4; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Chromatography, Liquid; Dibenzocycloheptenes; Diketopiperazines; Drug Discovery; Heterocyclic Compounds, 4 or More Rings; Humans; Intestinal Absorption; Mass Spectrometry; Models, Biological; Neoplasm Proteins; Pharmaceutical Preparations; Predictive Value of Tests; Propionates; Quinolines; Substrate Specificity

2011
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
A high-throughput cell-based method to predict the unbound drug fraction in the brain.
    Journal of medicinal chemistry, 2014, Apr-10, Volume: 57, Issue:7

    Topics: Animals; Brain; Dialysis; HEK293 Cells; High-Throughput Screening Assays; Humans; Pharmaceutical Preparations; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2014
Development of an
    Journal of medicinal chemistry, 2021, 03-11, Volume: 64, Issue:5

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Blood-Brain Barrier; Cell Line; Computer Simulation; Endothelial Cells; Gene Knockout Techniques; Humans; Organic Chemicals; Rats, Transgenic

2021
Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability.
    Pharmaceutical research, 1999, Volume: 16, Issue:12

    Topics: Algorithms; Animals; Biological Availability; Caco-2 Cells; Calcium Channel Blockers; Carbamates; Cell Membrane Permeability; Chromatography, High Pressure Liquid; Dogs; Furans; HIV Protease Inhibitors; Humans; Permeability; Polyethylene Glycols; Solubility; Stimulation, Chemical; Sulfonamides; Verapamil; Vitamin E

1999
Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood--brain barrier.
    AIDS (London, England), 2001, Mar-09, Volume: 15, Issue:4

    Topics: Animals; Astrocytes; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP-Binding Cassette Transporters; Biological Transport, Active; Blood-Brain Barrier; Caco-2 Cells; Carbamates; Cattle; Cell Line, Transformed; Cells, Cultured; Coculture Techniques; Cyclosporins; Dibenzocycloheptenes; Endothelium, Vascular; Furans; HIV Protease Inhibitors; Humans; Indinavir; LLC-PK1 Cells; Multidrug Resistance-Associated Proteins; Probenecid; Quinolines; Rats; Rats, Wistar; Ritonavir; Sulfonamides; Swine; Verapamil

2001
In vitro-to-in vivo prediction of P-glycoprotein-based drug interactions at the human and rodent blood-brain barrier.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:3

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Blood-Brain Barrier; Boron Compounds; Carbamates; Carbon Radioisotopes; Cyclosporine; Drug Interactions; Fluorescent Dyes; Furans; Humans; LLC-PK1 Cells; Positron-Emission Tomography; Quinidine; Quinine; Rats; Sulfonamides; Swine; Verapamil

2008
Validation of a differential in situ perfusion method with mesenteric blood sampling in rats for intestinal drug interaction profiling.
    Biopharmaceutics & drug disposition, 2010, Volume: 31, Issue:5-6

    Topics: Adrenergic beta-Antagonists; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Carbamates; Drug Interactions; Furans; Intestinal Absorption; Ketoconazole; Male; Perfusion; Polyethylene Glycols; Rats; Rats, Wistar; Splanchnic Circulation; Sulfonamides; Verapamil; Vitamin E

2010