verapamil and 1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one

verapamil has been researched along with 1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (57.14)29.6817
2010's3 (42.86)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Baltrons, MA; García, A; Pedraza, CE1
Ertunc, M; Onur, R; Sara, Y1
Adaikan, PG; Lau, LC1
Cao, LH; Choi, DH; Kang, DG; Kim, JS; Kim, SJ; Lee, H; Lee, HS; Lee, JK1
Kito, Y; Suzuki, H1
Alexander, SP; Garle, MJ; Randall, MD; Roberts, RE; Wong, PS1
Busch, M; Busch, R; Dörr, M; Eckerle, LG; Felix, SB; Gross, S; Hertrich, I; Rauch, BH; Reinke, Y; Riad, A; Stasch, JP1

Other Studies

7 other study(ies) available for verapamil and 1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one

ArticleYear
Interleukin-1beta stimulates cyclic GMP efflux in brain astrocytes.
    FEBS letters, 2001, Nov-02, Volume: 507, Issue:3

    Topics: Animals; Astrocytes; Biological Transport; Brain; Cells, Cultured; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Guanylate Cyclase; Interleukin-1; Lipopolysaccharides; Nitric Oxide; Nitric Oxide Synthase; omega-N-Methylarginine; Oxadiazoles; Probenecid; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase; Verapamil

2001
The role of nitric oxide on contractile impairment during endotoxemia in rat diaphragm muscle.
    European journal of pharmacology, 2004, Nov-28, Volume: 505, Issue:1-3

    Topics: Animals; Caffeine; Diaphragm; Endotoxemia; Enzyme Inhibitors; Guanidines; In Vitro Techniques; Indazoles; Lipopolysaccharides; Male; Muscle Contraction; Neuromuscular Nondepolarizing Agents; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Oxadiazoles; Quinoxalines; Rats; Rats, Wistar; Ryanodine; Tubocurarine; Vasodilator Agents; Verapamil

2004
Mechanisms of direct relaxant effect of sildenafil, tadalafil and vardenafil on corpus cavernosum.
    European journal of pharmacology, 2006, Jul-17, Volume: 541, Issue:3

    Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Animals; Calcium; Carbolines; Dose-Response Relationship, Drug; Imidazoles; Male; Muscle Relaxation; Muscle, Smooth; Norepinephrine; Oxadiazoles; Penis; Phosphodiesterase Inhibitors; Piperazines; Purines; Quinoxalines; Rabbits; Sildenafil Citrate; Sulfones; Tadalafil; Triazines; Vardenafil Dihydrochloride; Verapamil

2006
Endothelium-dependent induction of vasorelaxation by the butanol extract of Phellinus igniarius in isolated rat aorta.
    The American journal of Chinese medicine, 2006, Volume: 34, Issue:4

    Topics: Animals; Aorta; Atropine; Butanols; Cyclic GMP; Diltiazem; Dose-Response Relationship, Drug; Endothelium, Vascular; Enzyme Inhibitors; Glyburide; In Vitro Techniques; Indomethacin; Male; Methylene Blue; NG-Nitroarginine Methyl Ester; Oxadiazoles; Polyporaceae; Propranolol; Quinoxalines; Rats; Rats, Sprague-Dawley; Tetraethylammonium; Vasodilation; Vasodilator Agents; Verapamil

2006
Properties of Rikkunshi-to (TJ-43)-induced relaxation of rat gastric fundus smooth muscles.
    American journal of physiology. Gastrointestinal and liver physiology, 2010, Volume: 298, Issue:5

    Topics: Animals; Apamin; Drugs, Chinese Herbal; Enprostil; Gastric Fundus; Hesperidin; Membrane Potentials; Muscle Relaxation; Muscle, Smooth; Oxadiazoles; Potassium; Pyrimidinones; Quinoxalines; Rats; Thiazoles; Verapamil

2010
A role for the sodium pump in H2O2-induced vasorelaxation in porcine isolated coronary arteries.
    Pharmacological research, 2014, Volume: 90

    Topics: Animals; Bradykinin; Carbenoxolone; Catalase; Colforsin; Coronary Vessels; Female; Hydrogen Peroxide; In Vitro Techniques; Indomethacin; Male; NG-Nitroarginine Methyl Ester; Nitroprusside; Ouabain; Oxadiazoles; Peptides; Polyethylene Glycols; Quinoxalines; Sodium-Potassium-Exchanging ATPase; Swine; Vasoconstrictor Agents; Vasodilation; Verapamil

2014
The soluble guanylate cyclase stimulator riociguat and the soluble guanylate cyclase activator cinaciguat exert no direct effects on contractility and relaxation of cardiac myocytes from normal rats.
    European journal of pharmacology, 2015, Nov-15, Volume: 767

    Topics: Animals; Benzoates; Calcium; Cyclic AMP; Cyclic GMP; Dose-Response Relationship, Drug; Drug Synergism; Electric Stimulation; Female; Guanylate Cyclase; Isoproterenol; Muscle Relaxation; Myocardial Contraction; Myocytes, Cardiac; Oxadiazoles; Pyrazoles; Pyrimidines; Quinoxalines; Rats; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase; Thionucleotides; Verapamil

2015