vasopressin--1-(1-mercaptocyclohexaneacetic-acid)-2-(o--methyl-l-tyrosine)-8-l-arginine- has been researched along with 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline* in 2 studies
2 other study(ies) available for vasopressin--1-(1-mercaptocyclohexaneacetic-acid)-2-(o--methyl-l-tyrosine)-8-l-arginine- and 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline
Article | Year |
---|---|
Glutamate-vasopressin interactions and the neurobiology of anabolic steroid-induced offensive aggression.
In the latero-anterior hypothalamus (LAH) increased glutamate and vasopressin (AVP) activity facilitate anabolic androgenic steroid (AAS)-induced offensive aggression. In addition, adolescent AAS treatment increases the strength of glutamate-mediated connections between the LAH and the brain nucleus of stria terminalis (BNST). The current set of studies used male Syrian hamsters exposed to AAS during adolescence to examine whether increased glutamate-mediated stimulation of the BNST is dependent on LAH-AVP signaling and whether this neural pathway modulates adolescent AAS-induced offensive aggression. In the first set of AAS-treated animals offensive aggression was measured following blockade of glutamate activity within the BNST using NBQX. Then, in a second group of AAS-treated animals aggression levels were examined following simultaneous blockade of LAH-AVP activity using Manning compound and stimulation of BNST glutamate using AMPA. Lastly, the number of AVP fibers in apposition to glutamate cells was examined in AAS and control animals, using double-label immunofluorescence. The results showed that administration of NBQX into the BNST dose-dependently reduced aggressive behavior in AAS-treated animals. Further, the current results replicated previous findings showing that blockade of LAH-AVP significantly reduces aggressive behavior in AAS-treated animals. In these animals stimulation of BNST-AMPA receptors had a linear effect on aggression, where the smallest dose exacerbated the inhibitory effect of the V1a antagonist, the medium dose had no effect and the highest dose recuperated aggression to control levels. Finally when compared with control animals, AAS treatment produced a significant increase in the number of AVP fibers in apposition to LAH-glutamate cells. Overall, these results identify the BNST as a key brain region involved in aggression control and provide strong evidence suggesting that AVPergic-mediated stimulation of BNST-glutamate is a possible mechanism that facilitates aggression expression in adolescent AAS-treated animals. Topics: Age Factors; Aggression; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Anabolic Agents; Animals; Animals, Newborn; Arginine Vasopressin; Behavior, Animal; Cricetinae; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Glutamic Acid; Hormone Antagonists; Hypothalamic Area, Lateral; Male; Mesocricetus; Microinjections; Quinoxalines; Septal Nuclei; Statistics, Nonparametric; Steroids; Vasopressins; Vesicular Glutamate Transport Protein 2 | 2011 |
Electrophysiological evidence for vasopressin V(1) receptors on neonatal motoneurons, premotor and other ventral horn neurons.
Prominent arginine-vasopressin (AVP) binding and AVP V(1) type receptors are expressed early in the developing rat spinal cord. We sought to characterize their influence on neural excitability by using patch-clamp techniques to record AVP-induced responses from a population of motoneurons and interneurons in neonatal (5-18 days) rat spinal cord slices. Data were obtained from 58 thoracolumbar (T(7)-L(5)) motoneurons and 166 local interneurons. A majority (>90%) of neurons responded to bath applied AVP (10 nM to 3 microM) and (Phe(2), Orn(8))-vasotocin, a V(1) receptor agonist, but not V(2) or oxytocin receptor agonists. In voltage-clamp, postsynaptic responses in motoneurons were characterized by slowly rising, prolonged (7-10 min) and tetrodotoxin-resistant inward currents associated with a 25% reduction in a membrane potassium conductance that reversed near -100 mV. In interneurons, net AVP-induced inward currents displayed three patterns: decreasing membrane conductance with reversal near -100 mV, i.e., similar to that in motoneurons (24 cells); increasing conductance with reversal near -40 mV (21 cells); small reduction in conductance with no reversal within the current range tested (41 cells). A presynaptic component recorded in most neurons was evident as an increase in the frequency but not amplitude (in motoneurons) of inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs), in large part due to AVP-induced firing in inhibitory (mainly glycinergic) and excitatory (glutamatergic) neurons synapsing on the recorded cells. An increase in frequency but not amplitude of miniature IPSCs and EPSCs also indicated an AVP enhancement of neurotransmitter release from axon terminals of inhibitory and excitatory interneurons. These observations provide support for a broad presynaptic and postsynaptic distribution of AVP V(1) type receptors and indicate that their activation can enhance the excitability of a majority of neurons in neonatal ventral spinal cord. Topics: 2-Amino-5-phosphonovalerate; Animals; Animals, Newborn; Anterior Horn Cells; Arginine Vasopressin; Bicuculline; Deamino Arginine Vasopressin; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; GABA Antagonists; Glycine Agents; Hemosiderin; Hormone Antagonists; Interneurons; Male; Oxytocin; Patch-Clamp Techniques; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Vasopressin; Strychnine; Vasotocin | 2001 |