vasoactive-intestinal-peptide has been researched along with exendin-(9-39)* in 3 studies
3 other study(ies) available for vasoactive-intestinal-peptide and exendin-(9-39)
Article | Year |
---|---|
Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.
Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks that control secretomotor functions. Topics: Acetylcholine; Animals; Carbachol; Chlorides; Choline O-Acetyltransferase; Cytoplasm; ELAV Proteins; Electric Conductivity; Electric Stimulation; Electrophysiological Phenomena; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Guinea Pigs; Hexamethonium; Ileum; In Vitro Techniques; Intestinal Mucosa; Intestine, Small; Male; Neurons; Neuropeptide Y; Peptide Fragments; Receptors, Glucagon; Receptors, Vasoactive Intestinal Polypeptide, Type I; Scopolamine; Somatostatin; Vasoactive Intestinal Peptide | 2012 |
Glucagon-like peptides 1 and 2 and vasoactive intestinal peptide are neuroprotective on cultured and mast cell co-cultured rat myenteric neurons.
Neuropathy is believed to be a common feature of functional and inflammatory intestinal diseases. Vasoactive intestinal peptide (VIP) is an acknowledged neuroprotective agent in peripheral, including enteric, and central neurons. The proglucagon-like hormones glucagon-like peptide 1 and 2 (GLP1 and GLP2) belong to the secretin/glucagon/VIP superfamily of peptides and GLP1 and GLP2 receptors are expressed in enteric neurons. Possible neuroprotective effects of these peptides were investigated in the present study.. GLP1, GLP2 and VIP were added to cultured myenteric neurons from rat small intestine or to co-cultures of myenteric neurons and rat peritoneal mast cells. Receptor selectivity was tested by the simultaneous presence of a GLP1 receptor antagonist (exendin (9-39) amide) or a VIP receptor antagonist (hybrid of neurotensin 6-11 and VIP 7-28). Neuronal survival was examined using immunocytochemistry and cell counting.. GLP1, GLP2 and VIP significantly and concentration-dependently enhanced neuronal survival. In addition the peptides efficiently counteracted mast cell-induced neuronal cell death in a concentration-dependent manner. Exendin(9-39)amide reversed GLP1-induced neuroprotection while GLP2- and VIP-induced enhanced neuronal survival were unaffected. The VIP receptor antagonist reversed GLP1- and VIP-induced neuroprotection while the GLP2-induced effect on neuronal survival was unaffected.. By activating separate receptors VIP, GLP1 and GLP2 elicit neuroprotective effects on rat myenteric neurons cultured with or without mast cells. This implies a powerful therapeutic potential of these peptides in enteric neuropathies with a broad spectrum of applications from autoimmunity to functional disorders. Topics: Analysis of Variance; Animals; Cell Survival; Cells, Cultured; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Intestine, Small; Mast Cells; Myenteric Plexus; Neurons; Neuroprotective Agents; Neurotensin; Peptide Fragments; Rats; Rats, Sprague-Dawley; Recombinant Fusion Proteins; Vasoactive Intestinal Peptide | 2012 |
Glucagon-like peptide-1 is a physiological incretin in rat.
Glucagon-like peptide-1 7-36 amide (GLP-1) has been postulated to be the primary hormonal mediator of the entero-insular axis but evidence has been indirect. The discovery of exendin (9-39), a GLP-1 receptor antagonist, allowed this to be further investigated. The IC50 for GLP-1 receptor binding, using RIN 5AH beta-cell membranes, was found to be 0.36 nmol/l for GLP-1 and 3.44 nmol/l for exendin (9-39). There was no competition by exendin (9-39) at binding sites for glucagon or related peptides. In the anaesthetized fasted rat, insulin release after four doses of GLP-1 (0.1, 0.2, 0.3, and 0.4 nmol/kg) was tested by a 2-min intravenous infusion. Exendin (9-39) (1.5, 3.0, and 4.5 nmol/kg) was administered with GLP-1 0.3 nmol/kg, or saline, and only the highest dose fully inhibited insulin release. Exendin (9-39) at 4.5 nmol/kg had no effect on glucose, arginine, vasoactive intestinal peptide or glucose-dependent insulinotropic peptide stimulated insulin secretion. Postprandial insulin release was studied in conditioned conscious rats after a standard meal. Exendin (9-39) (0.5 nmol/kg) considerably reduced postprandial insulin concentrations, for example by 48% at 15 min (431 +/- 21 pmol/l saline, 224 +/- 32 pmol/l exendin, P < 0.001). Thus, GLP-1 appears to play a major role in the entero-insular axis. Topics: Anesthesia; Animals; Arginine; Cells, Cultured; Consciousness; Eating; Fasting; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glucose; Infusions, Intravenous; Insulin; Insulin Secretion; Male; Pancreas; Peptide Fragments; Peptides; Protein Precursors; Radioligand Assay; Rats; Rats, Wistar; Receptors, Glucagon; Vasoactive Intestinal Peptide | 1995 |