vasoactive-intestinal-peptide has been researched along with ergovaline* in 2 studies
2 other study(ies) available for vasoactive-intestinal-peptide and ergovaline
Article | Year |
---|---|
Alkaloid binding and activation of D2 dopamine receptors in cell culture.
Ergot and pyrrolizidine alkaloids, either extracted from endophyte-infected tall fescue, synthesized, or purchased commercially, were evaluated in cultured cells to estimate their binding to the D2 dopamine receptor and subsequent effects on cyclic AMP production in GH4ZR7 cells, transfected with a rat D2 dopamine receptor. Ergopeptide alkaloid (alpha-ergocryptine, bromocryptine, ergotamine tartrate, and ergovaline) inhibition of the binding of the D2-specific radioligand, [3H]YM-09151-2, exhibited inhibition constants (K(I)) in the nanomolar range, whereas dopamine was less potent (micromolar). The lysergic acid amides (ergine and ergonovine) were 1/100th as potent as the ergopeptide alkaloids. Ergovaline and ergotamine tartrate were equally effective in inhibiting vasoactive intestinal peptide (VIP)-stimulated cyclic AMP production, with consistent nanomolar effective concentration (EC50) values. The remaining ergopeptide alkaloids (alpha-ergocryptine and bromocryptine), lysergic acid amides (ergonovine and ergine), and dopamine were 1/100th as potent. Two representative pyrrolizidines, N-formylloline and N-acetylloline, exhibited no binding activity at the D2 dopamine receptor or effects on the cyclic AMP system within the concentration ranges of nanomolar to millimolar. Our results indicate that the commercially available ergot alkaloids ergotamine tartrate and ergonovine may be used interchangeably in the D2 dopamine receptor system to simulate the effects of extracted ergovaline and ergine and to examine responses in receptor binding and the inhibition of cyclic AMP. Topics: Animals; Benzamides; Cell Line; Cyclic AMP; Ergolines; Ergonovine; Ergot Alkaloids; Ergotamine; Ergotamines; Ligands; Pyrrolizidine Alkaloids; Rats; Receptors, Dopamine D2; Vasoactive Intestinal Peptide | 1999 |
Ergovaline binding and activation of D2 dopamine receptors in GH4ZR7 cells.
Ergovaline inhibition of radioligand binding to the D2 dopamine receptor and ergot alkaloid inhibition of vasoactive intestinal peptide (VIP)-stimulated cyclic AMP production in GH4ZR7 cells, stably transfected with a rat D2 dopamine receptor, were evaluated. Ergovaline inhibition of the binding of the D2-specific radioligand, [3H]YM-09151-2, exhibited a KI (inhibition constant) of 6.9 +/- 2.6 nM, whereas dopamine was much less potent (370 +/- 160 nM). Ergot alkaloids were also effective in inhibiting VIP-stimulated cyclic AMP production, with EC50 values for ergovaline, ergonovine, alpha-ergocryptine, ergotamine, and dopamine of 8 +/- 2, 47 +/- 2, 28 +/- 2, 2 +/- 1, and 8 +/- 1 nM, respectively. Inhibition of cyclic AMP production by ergovaline was blocked by the dopamine receptor antagonist, (-)-sulpiride (IC50, 300 +/- 150 nM). Our results indicate that ergot compounds, especially ergovaline, bind to D2 dopamine receptors and elicit second messenger responses similar to that of dopamine. These findings suggest that some of the deleterious effects of consumption of endophyte-infected tall fescue, which contains several ergot alkaloids including ergovaline, may be due to D2 dopamine receptor activation. Topics: Adenosine Monophosphate; Animals; Cell Membrane; Ergotamines; Pituitary Neoplasms; Radioligand Assay; Rats; Receptors, Dopamine D2; Second Messenger Systems; Sulpiride; Transfection; Tumor Cells, Cultured; Vasoactive Intestinal Peptide; Vasoconstrictor Agents | 1995 |