vapiprost has been researched along with sulprostone* in 2 studies
2 other study(ies) available for vapiprost and sulprostone
Article | Year |
---|---|
Prostanoid EP(1)- and TP-receptors involved in the contraction of human pulmonary veins.
1. To characterize the prostanoid receptors (TP, FP, EP(1) and/or EP(3)) involved in the vasoconstriction of human pulmonary veins, isolated venous preparations were challenged with different prostanoid-receptor agonists in the absence or presence of selective antagonists. 2. The stable thromboxane A(2) mimetic, U46619, was a potent constrictor agonist on human pulmonary veins (pEC(50)=8.60+/-0.11 and E(max)=4.61+/-0.46 g; n=15). The affinity values for two selective TP-antagonists (BAY u3405 and GR32191B) versus U46619 were BAY u3405: pA(2)=8.94+/-0.23 (n=3) and GR32191B: apparent pK(B)=8.25+/-0.34 (n=3), respectively. These results are consistent with the involvement of TP-receptor in the U46619 induced contractions. 3. The two EP(1)-/EP(3)- agonists (17-phenyl-PGE(2) and sulprostone) induced contraction of human pumonary veins (pEC(50)=8.56+/-0.18; E(max)=0.56+/-0.24 g; n=5 and pEC(50)=7.65+/-0.13; E(max)=1.10+/-0.12 g; n=14, respectively). The potency ranking for these agonists: 17-phenyl-PGE(2) > sulprostone suggests the involvement of an EP(1)-receptor rather than EP(3). In addition, the contractions induced by sulprostone, 17-phenyl-PGE(2) and the IP-/EP(1)- agonist (iloprost) were blocked by the DP-/EP(1)-/EP(2)-receptor antagonist (AH6809) as well as by the EP(1) antagonist (SC19220). 4. PGF(2alpha) induced small contractions which were blocked by AH6809 while fluprostenol was ineffective. These results indicate that FP-receptors are not implicated in the contraction of human pulmonary veins. 5. These data suggest that the contractions induced by prostanoids involved TP- and EP(1)-receptors in human pulmonary venous smooth muscle. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Biphenyl Compounds; Carbazoles; Culture Techniques; Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide; Dinoprostone; Dose-Response Relationship, Drug; Endothelium, Vascular; Female; Heptanoic Acids; Humans; Iloprost; Male; Middle Aged; Muscle Contraction; Muscle, Smooth, Vascular; Prostaglandin Antagonists; Prostaglandins F, Synthetic; Pulmonary Veins; Receptors, Prostaglandin; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP1 Subtype; Receptors, Prostaglandin E, EP3 Subtype; Receptors, Thromboxane; Sulfonamides; Vasoconstriction; Xanthenes; Xanthones | 2001 |
A common low-affinity binding site for primary prostanoids on bovine aortic endothelial cells.
[3H]PGE2 and [3H]PGF2 alpha were shown to bind with similar binding capacity and dissociation constants to bovine aorta endothelial cells. The similarity in the binding parameters suggests that both agonists may bind to the same binding site. Displacement of [3H]PGE2 performed with PGE2, PGF2 alpha or U-46619, a thromboxane agonist, shows that all three prostanoids displaced the bound [3H]PGE2 with comparable potency (IC50 = 10(-7) M). These results indicated that the three different prostanoids, which serve as specific agonists to different prostanoid receptors, also compete for the same binding site in bovine endothelial cells with similar affinity. Comparison of the displacement of [3H]PGE2 or [3H]PGF2 alpha by a number of prostaglandin agonists and antagonists further supports the notion that the natural prostanoids bind with similar affinities to the same binding site. Thus, sulprostone, an EP1/EP3 agonist, displaced bound [3H]PGE2 and [3H]PGF2 alpha with IC50 of about 10(-7) M. On the other hand, thromboxane antagonists (BAY u-3405 and GR-32191B), EP1 specific antagonist (SC-19220) EP1/DP antagonist (AH-6809) and iloprost, a stable prostacyclin agonist, failed to displace bound [3H]PGE2 or [3H]PGF2 alpha at a concentration range of 10(-9)-10(-6) M. Gradual increase of sodium fluoride (NaF), a general activator of G binding proteins, or incubation of permeabilized cells with GTP gamma S resulted in a decrease in [3H]PGE2 binding, suggesting that the binding site represents a low-affinity common prostanoid receptor which, similar to other prostanoid receptors, is probably coupled with G binding proteins. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Aorta; Binding Sites; Biphenyl Compounds; Carbazoles; Cattle; Cells, Cultured; Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide; Dinoprostone; Endothelium, Vascular; Epoprostenol; Heptanoic Acids; Iloprost; Prostaglandin Endoperoxides, Synthetic; Prostaglandins; Sulfonamides; Thromboxane A2; Thromboxanes; Xanthenes; Xanthones | 1996 |