vapiprost and ridogrel

vapiprost has been researched along with ridogrel* in 3 studies

Other Studies

3 other study(ies) available for vapiprost and ridogrel

ArticleYear
Threshold concentrations of endothelin-1: the effects on contractions induced by 5-hydroxytryptamine in isolated rat cerebral and mesenteric arteries.
    Pharmacology & toxicology, 1999, Volume: 85, Issue:3

    This study compares the effects of threshold concentrations of endothelin-1 in isolated rat basilar arteries with those in mesenteric arterial branches and investigates the mechanisms of inhibitory and potentiating endothelin-1-effects. In basilar arteries, endothelin-1 reduces the contractions induced by 5-hydroxytryptamine (5-HT), by the thromboxane A2 agonist U46619, and by vasopressin. The inhibitory effect of endothelin-1 on the contraction induced by 5-HT is abolished by deendothelialization, by the endothelin ET(B) receptor antagonist RES 701-1, by indomethacin, or by glibenclamide. In mesenteric arteries, endothelin-1 potentiates the contractile effects of 5-HT, U46619, and vasopressin. The potentiation of the contractile effect induced by 5-HT is only somewhat modified by deendothelialization, but abolished by the thromboxane A2 receptor antagonists GR32191 and ridogrel. U46619 potentiates the 5-HT-effect in mesenteric arteries. Thus, though the contractile endothelin ET(A) receptors were not blocked, threshold concentrations of endothelin-1 inhibited contractile effects in the rat basilar artery via activation of endothelial ET(B) receptors. Prostaglandins and ATP-sensitive K+ channels are involved in this inhibitory action. In contrast, endothelin-1 potentiates contractile actions in mesenteric arteries via the release of endogeneous thromboxane A2 from non-endothelial cells. The study points out the completely different role of the endothelium in combined effects of endothelin-1 between cerebral and mesenteric arteries.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Basilar Artery; Biphenyl Compounds; Drug Synergism; Endothelin Receptor Antagonists; Endothelin-1; Glyburide; Heptanoic Acids; Indomethacin; Male; Mesenteric Arteries; Muscle Contraction; Muscle, Smooth, Vascular; Pentanoic Acids; Peptides, Cyclic; Pyridines; Rats; Rats, Sprague-Dawley; Serotonin; Vasoconstriction; Vasopressins

1999
Thromboxane (Tx) A2 receptor blockade and TxA2 synthase inhibition alone and in combination: comparison of anti-aggregatory efficacy in human platelets.
    British journal of pharmacology, 1991, Volume: 102, Issue:2

    1. The present study has compared the relative anti-aggregatory effect of various compounds which interfere with thromboxane (Tx) A2-dependent aggregation of human platelets in whole blood in vitro. These included the cyclo-oxygenase inhibitor aspirin, the TxA2 synthase inhibitor dazoxiben, the TxA2 (TP-) receptor blocking drug GR32191 and two compounds, R.68070 ((E)-5-[[[(3-pyridinyl) [3-(trifluoromethyl)phenyl]-methylen] amino]oxy] pentanoic acid) and CV-4151 [E)-7-phenyl-7-(3-pyridyl)-6-heptenoic acid), which possess both TP-receptor blocking and TxA2 synthase inhibitory activities in the same molecule. 2. GR32191, R.68070 and CV-4151 all antagonized aggregation to the TxA2 mimetic U-46619, with pA2 values of approximately 8.2, 5.4 and 4.8 respectively. This effect was specific, platelet aggregation induced by adenosine 5'-diphosphate (ADP) being unaffected by concentrations up to 10, 1000 and 300 microM respectively. In contrast, neither aspirin nor dazoxiben exhibited any measurable TP-receptor blocking activity. 3. The rank order of potency (pIC50) for inhibition of TxA2 formation in serum was R.68070 (7.4) greater than CV-4151 (6.9) greater than dazoxiben (5.7) greater than aspirin (5.3). In addition, all four drugs abolished collagen-induced platelet TxA2 formation. In contrast, GR32191 produced no consistent inhibition of TxA2 formation in either system up to concentrations of 10-30 microM. 4. The specificity of R.68070, CV-4151 and dazoxiben for TxA2 synthase was indicated by their ability to increase serum levels of prostaglandin E2 (PGE2) and PGD2 in parallel with decreases in TxA2 formation. This profile was not observed with aspirin or GR32191. However, high concentrations of R.68070 (100,microM) and CV-4151 (1000 microM) necessary for maximum TP-receptor blocking activity, produced substantially smaller increases in PGE2 and PGD2, consistent with an aspirin-like effect of these compounds upon cyclo-oxygenase. With dazoxiben (1000 microM), PGE2 and PGD2 levels remained elevated. 5. Aspirin inhibited collagen-induced platelet aggregation, the effect correlating with inhibition of TxA2 formation. Dazoxiben, whilst also achieving maximal inhibition of TxA2 formation, produced significantly less inhibition of aggregation than aspirin. In contrast, GR32191 (0.1-1O microM), at concentrations specific for TP-receptor blockade, produced a significantly greater antagonism of collagen-induced platelet aggregation than aspirin. This additional effect o

    Topics: Aspirin; Biphenyl Compounds; Drug Interactions; Fatty Acids, Monounsaturated; Heptanoic Acids; Humans; Imidazoles; In Vitro Techniques; Male; Pentanoic Acids; Platelet Aggregation; Platelet Aggregation Inhibitors; Pyridines; Receptors, Prostaglandin; Receptors, Thromboxane; Thromboxane-A Synthase

1991
Comparison of GR32191, R68070 and CV-4151 upon U-46619- and collagen-induced platelet aggregation in vitro and ex vivo.
    British journal of pharmacology, 1989, Volume: 98 Suppl

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Biphenyl Compounds; Collagen; Fatty Acids, Monounsaturated; Heptanoic Acids; Humans; In Vitro Techniques; Pentanoic Acids; Platelet Aggregation; Prostaglandin Endoperoxides, Synthetic; Pyridines; Thromboxane-A Synthase; Valerates

1989