vancomycin has been researched along with clofazimine in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 4 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Cho, SH; Franzblau, SG; Hwang, CH; Pauli, GF; Wan, B; Warit, S | 1 |
Aínsa, JA; Martín, C; Ramón-García, S; Thompson, CJ | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Cai, G; Cho, S; Franzblau, SG; Jaki, BU; Lee, IA; McAlpine, JB; Napolitano, JG; Pauli, GF; Suh, JW; Wang, Y; Yang, SH | 1 |
Dufková, I; Hrabálek, A; Karabanovich, G; Klimešová, V; Němeček, J; Pávek, P; Roh, J; Smutný, T; Stolaříková, J; Vávrová, K; Vejsová, M; Vicherek, P | 1 |
Carazo, A; Hrabálek, A; Karabanovich, G; Klimešová, V; Konečná, K; Němeček, J; Pávek, P; Pavliš, O; Roh, J; Stolaříková, J; Valášková, L; Vávrová, K | 1 |
6 other study(ies) available for vancomycin and clofazimine
Article | Year |
---|---|
Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis.
Topics: Anti-Bacterial Agents; Antitubercular Agents; DNA, Bacterial; Drug Evaluation, Preclinical; Mycobacterium tuberculosis; Oxygen | 2007 |
Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth.
Topics: Antitubercular Agents; Bacterial Proteins; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Clofazimine; Dithiothreitol; Drug Resistance, Multiple, Bacterial; Gene Expression Regulation, Bacterial; Glutathione; Hydrogen Peroxide; Membrane Transport Proteins; Mutation; Mycobacterium tuberculosis; Oligonucleotide Array Sequence Analysis; Oxidative Stress; Rifampin; Valinomycin | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Hytramycins V and I, anti-Mycobacterium tuberculosis hexapeptides from a Streptomyces hygroscopicus strain.
Topics: Animals; Antitubercular Agents; Chlorocebus aethiops; Chromatography, High Pressure Liquid; Inhibitory Concentration 50; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium tuberculosis; Nuclear Magnetic Resonance, Biomolecular; Peptides, Cyclic; Streptomyces; Vero Cells | 2013 |
1-Substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles and their isosteric analogs: A new class of selective antitubercular agents active against drug-susceptible and multidrug-resistant mycobacteria.
Topics: Antineoplastic Agents; Antitubercular Agents; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Drug Resistance, Multiple, Bacterial; Drug Screening Assays, Antitumor; HeLa Cells; Hep G2 Cells; Humans; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium tuberculosis; Nitrobenzenes; Structure-Activity Relationship; Triazoles; Tumor Cells, Cultured | 2014 |
S-substituted 3,5-dinitrophenyl 1,3,4-oxadiazole-2-thiols and tetrazole-5-thiols as highly efficient antitubercular agents.
Topics: Antifungal Agents; Antitubercular Agents; Drug Design; Drug Resistance; Hep G2 Cells; Humans; Microbial Sensitivity Tests; Oxadiazoles; Structure-Activity Relationship; Sulfhydryl Compounds; Tetrazoles | 2017 |