valproic acid and quercetin

valproic acid has been researched along with quercetin in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (10.00)18.2507
2000's3 (30.00)29.6817
2010's3 (30.00)24.3611
2020's3 (30.00)2.80

Authors

AuthorsStudies
Strassburg, CP; Tukey, RH1
Lombardo, F; Obach, RS; Waters, NJ1
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Agard, DA; Ashworth, A; Barrio-Hernandez, I; Batra, J; Beltrao, P; Bennett, MJ; Bohn, M; Bouhaddou, M; Braberg, H; Broadhurst, DJ; Cai, Y; Cakir, M; Calviello, L; Cavero, DA; Chang, JCJ; Chorba, JS; Craik, CS; d'Enfert, C; Dai, SA; Eckhardt, M; Emerman, M; Fabius, JM; Fletcher, SJ; Floor, SN; Foussard, H; Frankel, AD; Fraser, JS; Fujimori, DG; Ganesan, SJ; García-Sastre, A; Gordon, DE; Gross, JD; Guo, JZ; Haas, K; Haas, P; Hernandez-Armenta, C; Hiatt, J; Huang, XP; Hubert, M; Hüttenhain, R; Ideker, T; Jacobson, M; Jang, GM; Jura, N; Kaake, RM; Kim, M; Kirby, IT; Klippsten, S; Koh, C; Kortemme, T; Krogan, NJ; Kuzuoglu-Ozturk, D; Li, Q; Liboy-Lugo, J; Lin, Y; Liu, X; Liu, Y; Lou, K; Lyu, J; Mac Kain, A; Malik, HS; Mathy, CJP; McGregor, MJ; Melnyk, JE; Memon, D; Meyer, B; Miorin, L; Modak, M; Moreno, E; Mukherjee, S; Naing, ZZC; Noack, J; O'Meara, MJ; O'Neal, MC; Obernier, K; Ott, M; Peng, S; Perica, T; Pilla, KB; Polacco, BJ; Rakesh, R; Rathore, U; Rezelj, VV; Richards, AL; Roesch, F; Rosenberg, OS; Rosenthal, SB; Roth, BL; Roth, TL; Ruggero, D; Safari, M; Sali, A; Saltzberg, DJ; Savar, NS; Schwartz, O; Sharp, PP; Shen, W; Shengjuler, D; Shi, Y; Shoichet, BK; Shokat, KM; Soucheray, M; Stroud, RM; Subramanian, A; Swaney, DL; Taunton, J; Tran, QD; Trenker, R; Tummino, TA; Tutuncuoglu, B; Ugur, FS; Vallet, T; Venkataramanan, S; Verba, KA; Verdin, E; Vignuzzi, M; von Zastrow, M; Wang, HY; Wankowicz, SA; Wenzell, NA; White, KM; Xu, J; Young, JM; Zhang, Z; Zhou, Y1
Caprioli, RM; Seifert, WE1
Nieoczym, D; Raszewski, G; Socała, K; Wlaź, P1
Chaudhary, S; Ganjoo, P; Parvez, S; Raiusddin, S1
Baldissarelli, J; de Mattos, BDS; de Souza, AA; Gamaro, GD; Pedra, NS; Soares, MSP; Spanevello, RM; Spohr, L; Stefanello, FM; Teixeira, FC1
Darenskaya, MA; Grebenkina, LA; Kolesnikov, SI; Kolesnikova, LI; Okhremchuk, LV; Seminskii, IZ1

Reviews

1 review(s) available for valproic acid and quercetin

ArticleYear
Human UDP-glucuronosyltransferases: metabolism, expression, and disease.
    Annual review of pharmacology and toxicology, 2000, Volume: 40

    Topics: Autoimmunity; Chromosome Mapping; Glucuronides; Glucuronosyltransferase; Humans; Hyperbilirubinemia; Neoplasms; Steroids; Terminology as Topic

2000

Other Studies

9 other study(ies) available for valproic acid and quercetin

ArticleYear
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
    Journal of medicinal chemistry, 2008, Jun-12, Volume: 51, Issue:11

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship

2008
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.
    Nature, 2020, Volume: 583, Issue:7816

    Topics: Animals; Antiviral Agents; Betacoronavirus; Chlorocebus aethiops; Cloning, Molecular; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Drug Evaluation, Preclinical; Drug Repositioning; HEK293 Cells; Host-Pathogen Interactions; Humans; Immunity, Innate; Mass Spectrometry; Molecular Targeted Therapy; Pandemics; Pneumonia, Viral; Protein Binding; Protein Biosynthesis; Protein Domains; Protein Interaction Mapping; Protein Interaction Maps; Receptors, sigma; SARS-CoV-2; SKP Cullin F-Box Protein Ligases; Vero Cells; Viral Proteins

2020
Fast atom bombardment mass spectrometry.
    Methods in enzymology, 1996, Volume: 270

    Topics: Animals; Benzopyrenes; Cattle; Coumaric Acids; Glycerol; Glycopeptides; Insulin; Molecular Weight; Oxalates; Oxytocin; Penicillin G; Peptides; Phosphatidylethanolamines; Physalaemin; Quercetin; Sensitivity and Specificity; Spectrometry, Mass, Fast Atom Bombardment; Valproic Acid

1996
Effect of quercetin and rutin in some acute seizure models in mice.
    Progress in neuro-psychopharmacology & biological psychiatry, 2014, Oct-03, Volume: 54

    Topics: Animals; Anticonvulsants; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Electric Stimulation; Levetiracetam; Male; Memory, Long-Term; Mice; Muscle Strength; Pentylenetetrazole; Piracetam; Psychomotor Performance; Quercetin; Rutin; Seizures; Time Factors; Valproic Acid

2014
Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid.
    Protoplasma, 2015, Volume: 252, Issue:1

    Topics: Animals; Antioxidants; Humans; Kidney; Male; Oxidative Stress; Quercetin; Rats; Rats, Wistar; Valproic Acid

2015
Quercetin prevents alterations of behavioral parameters, delta-aminolevulinic dehydratase activity, and oxidative damage in brain of rats in a prenatal model of autism.
    International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience, 2020, Volume: 80, Issue:4

    Topics: Animals; Anticonvulsants; Autistic Disorder; Brain Chemistry; Female; Motor Activity; Neuroprotective Agents; Oxidative Stress; Pain Measurement; Porphobilinogen Synthase; Pregnancy; Prenatal Exposure Delayed Effects; Quercetin; Rats; Rats, Wistar; Social Interaction; Valproic Acid; Weight Gain

2020
Evaluation of the Protective Effect of Ademetionine, Cytoflavin, and Dihydroquercetetine on Blood Enzymes Activity in Rats Treated with High Doses of Sodium Valproate.
    Bulletin of experimental biology and medicine, 2020, Volume: 170, Issue:2

    Topics: Alkaline Phosphatase; Animals; Anticonvulsants; Drug Combinations; Epilepsy; Erythrocytes; Flavin Mononucleotide; gamma-Glutamyltransferase; Inosine Diphosphate; Liver; Male; Niacinamide; Quercetin; Rats; S-Adenosylmethionine; Succinates; Time Factors; Valproic Acid

2020