valproic acid has been researched along with ketanserin in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (11.11) | 18.7374 |
1990's | 2 (22.22) | 18.2507 |
2000's | 3 (33.33) | 29.6817 |
2010's | 3 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Andrews, PR; Craik, DJ; Martin, JL | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV | 1 |
Filipek, B; Gunia-Krzyżak, A; Marona, H; Nitek, W; Pańczyk, K; Pękala, E; Rapacz, A; Słoczyńska, K; Waszkielewicz, AM; Żelaszczyk, D; Żesławska, E | 1 |
Hansson, E; Nilsson, M; Rönnbäck, L | 1 |
Calabrese, JR; Khaitan, L; Stockmeier, CA | 1 |
Burke, T; Hensler, JG; Javors, M; Siafaka-Kapadai, A; Sullivan, NR | 1 |
9 other study(ies) available for valproic acid and ketanserin
Article | Year |
---|---|
Functional group contributions to drug-receptor interactions.
Topics: Animals; Calorimetry; Kinetics; Models, Biological; Protein Binding; Receptors, Cell Surface; Receptors, Drug; Structure-Activity Relationship | 1984 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Physicochemical determinants of human renal clearance.
Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations | 2010 |
Structure-anticonvulsant activity studies in the group of (E)-N-cinnamoyl aminoalkanols derivatives monosubstituted in phenyl ring with 4-Cl, 4-CH
Topics: Amino Alcohols; Animals; Anticonvulsants; Crystallography, X-Ray; Disease Models, Animal; Dose-Response Relationship, Drug; Electroshock; Mice; Models, Molecular; Molecular Structure; Rats; Seizures; Structure-Activity Relationship | 2017 |
Receptor-coupled uptake of valproate in rat astroglial primary cultures.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Astrocytes; Biological Transport; Cells, Cultured; Cerebral Cortex; Clonidine; Drug Interactions; Glutamates; Glutamic Acid; Isoproterenol; Kainic Acid; Ketanserin; Phenylephrine; Prazosin; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Neurotransmitter; Serotonin; Valproic Acid; Yohimbine | 1992 |
Effects of chronic treatment with valproate on serotonin-1A receptor binding and function.
Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Body Temperature; Brain Chemistry; Cerebral Cortex; Hippocampus; Ketanserin; Male; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, beta; Receptors, Serotonin; Valproic Acid | 1994 |
Effect of valproic acid on serotonin-2A receptor signaling in C6 glioma cells.
Topics: Animals; Anticonvulsants; Binding Sites; Cell Line; Dose-Response Relationship, Drug; Glioma; Ketanserin; Mice; Phosphatidylinositols; Quipazine; Receptor, Serotonin, 5-HT2A; Signal Transduction; Time Factors; Tritium; Valproic Acid | 2004 |