valinomycin has been researched along with tetronasin* in 2 studies
2 other study(ies) available for valinomycin and tetronasin
Article | Year |
---|---|
The effect of ruthenium(III) chloride on the formation of protonated parent ions in electrospray mass spectrometry.
We report the use of RuCl3 as an "alkali metal sponge". This is a general and highly efficient method for generating protonated parent ions for a variety of compounds that usually do not show this ion in electrospray mass spectrometry. This technique is demonstrated to be highly useful in "cleaning up" spectra from multiply metallated ions, thereby substantially improving the signal-to-noise ratio. Topics: beta-Cyclodextrins; Cyclodextrins; Furans; Ions; Monensin; Protons; Ruthenium Compounds; Spectrometry, Mass, Electrospray Ionization; Valinomycin | 2003 |
Effect of nigericin, monensin, and tetronasin on biohydrogenation in continuous flow-through ruminal fermenters.
Four ionophores differing in cation selectivity were compared for their effect on microbial fermentation and biohydrogenation by ruminal bacteria in continuous culture. Monensin and nigericin are monovalent antiporters with selective binding affinities for Na+ and K+, respectively. Tetronasin is a divalent antiporter that binds preferentially with Ca2+ or Mg2+. Valinomycin is a monovalent uniporter and does not exchange K+ for H+. Steady-state concentrations of 2 micrograms/ml of monensin, nigericin, tetronasin, or valinomycin were maintained by constant infusion into fermenters. Molar percentages of acetate were lower, and those of propionate were higher, in the presence of monensin, nigericin, and tetronasin; all three ionophores also decreased CH4 production. Concentrations of valinomycin as high as 8 micrograms/ml had no effect on volatile fatty acids or CH4 production. Monensin, nigericin, and tetronasin inhibited the rate of biohydrogenation of linoleic acid. Continuous infusion of C18:2n-6 at a steady-state concentration of 314 micrograms/ml into fermenters receiving monensin, nigericin, or tetronasin resulted in lower amounts of stearic acid and higher amounts of oleic acid. Ionophores increased total C18:2 conjugated acids mainly because of an increase in the cis-9, trans-11-C18:2 isomer. If reflected in milk fat, ionophore-induced changes in ruminal lipids could enhance the nutritional qualities of milk. Topics: Animals; Cattle; Fatty Acids, Volatile; Female; Fermentation; Furans; Hydrogenation; Ionophores; Methane; Monensin; Nigericin; Oleic Acid; Rumen; Stearic Acids; Valinomycin | 1997 |