valinomycin has been researched along with pyridine* in 2 studies
2 other study(ies) available for valinomycin and pyridine
Article | Year |
---|---|
Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.
The effect of NaCl and the pathways of the oxidation of reduced inorganic sulfur compounds were studied using resting cells and cell-free extracts of Acidithiobacillus thiooxidans strain SH. This isolate specifically requires NaCl for growth. The oxidation of sulfur and sulfite by resting cells was strongly inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. Carbonylcyanide m-chlorophenyl-hydrazone and monensin were also relatively strong inhibitors. Thiosulfate-oxidizing activity was not inhibited by these uncouplers. Valinomycin did not inhibit the oxidation of sulfur compounds. NaCl stimulated the sulfur- and sulfite-oxidizing activities in resting cells but not in cell-free extracts. The tetrathionate-oxidizing activity in resting cells was slightly stimulated by NaCl, whereas it did not influence the thiosulfate-oxidizing activity. Sulfide oxidation was biphasic, suggesting the formation of intermediate sulfur. The initial phase of sulfide oxidation was not affected by NaCl, whereas the subsequent oxidation of sulfur in the second phase was Na+-dependent. A model is proposed for the role of NaCl in the metabolism of reduced sulfur compounds in A. thiooxidans strain SH. Topics: Acidithiobacillus thiooxidans; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Cell-Free System; Culture Media; Cytochromes; Dose-Response Relationship, Drug; Hydrogen-Ion Concentration; Hydroxyquinolines; Ionophores; Models, Biological; Monensin; Oxygen; Pyridines; Sodium; Sodium Chloride; Spectrophotometry; Sulfides; Sulfur; Temperature; Valinomycin | 2005 |
The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites.
We studied the modulation of the permeability transition pore (MTP), a cyclosporin-A-sensitive channel, in deenergized mitochondria. Rat liver mitochondria were incubated in a potassium gluconate medium and treated with uncoupler, valinomycin, oligomycin and A23187. Under these conditions the membrane and Donnan potentials are collapsed, and no ion gradients are maintained, allowing the study of the dependence of MTP opening on the Ca2+ concentration under a variety of oxidative conditions without the complexities arising from changes of the membrane potential and matrix pH, and from secondary-ion redistribution. Cross-linking of mitochondrial dithiols with arsenite or phenylarsine oxide, or treatment with tert-butylhydroperoxide leading to complete oxidation of glutathione, increased the sensitivity of MTP opening to Ca2+. This effect could be fully prevented by prior treatment of mitochondria with monobromobimane and restored by reduction with dithiothreitol. The effect of tert-butylhydroperoxide was not additive with that of AsO, and it was completely blocked by modification of reduced glutathione with 1-chloro 2,4-dinitrobenzene through glutathione-S-transferase, indicating that oxidized glutathione affects the pore through the AsO-reactive and PhAsO-reactive dithiol. Oxidation of mitochondrial pyridine nucleotides by a variety of treatments also increased the sensitivity of MTP opening to Ca2+ under conditions where glutathione was maintained in the reduced state. This effect could be fully prevented when reduced pyridine nucleotides levels were reestablished with 2-hydroxybutyrate but not by treatment with monobromobimane or dithiothreitol. The effects of dithiol cross-linking or oxidation, and of pyridine nucleotide oxidation on the MTP were additive. The contribution of each of these two oxidative events, when they were induced at the same time, could still be selectively blocked by monobromobimane and dithiothreitol. The effects of dithiol cross-linking or oxidation, and of pyridine nucleotide oxidation on the MTP were additive. The contribution of each of these two oxidative events,when they were induced at the same time, could still be selectively blocked by monobromobimane and dithiothreitol, or by 2-hydroxybutyrate, respectively. Complete oxidation of pyridine nucleotides did not affect the reactivity of the dithiol towards monobromobimane, indicating that it remained in the reduced state. After transient opening of the MTP, sensitivity to py Topics: Animals; Arsenicals; Calcimycin; Calcium; Cross-Linking Reagents; Glutathione; Intracellular Membranes; Ion Channel Gating; Mitochondria, Liver; NAD; NADP; Nucleotides; Oligomycins; Oxidants; Oxidation-Reduction; Oxidative Stress; Permeability; Pyridines; Rats; Sulfhydryl Compounds; Valinomycin | 1996 |