valinomycin has been researched along with 5-dimethylamiloride* in 2 studies
2 other study(ies) available for valinomycin and 5-dimethylamiloride
Article | Year |
---|---|
Amiloride-insensitive Na+-H+ exchange: a candidate mediator of erythrocyte Na+-Li+ countertransport.
Erythrocyte Na+-Li+ countertransport shows an increased activity in essential hypertension and diabetic nephropathy, but its nature remains unknown. This amiloride-insensitive membrane transport may not be a mode of operation of the amiloride-sensitive NHE1, the only Na+-H+ exchange isoform found in human erythrocytes. Whether an independent, although unknown, amiloride-insensitive isoform mediates Na+-Li+ countertransport is unclear. Na+-H+ exchange activity was measured in acid-loaded erythrocytes. Dimethylamiloride, a specific inhibitor of Na+-H+ exchange and phloretin, a known inhibitor of Na+-Li+ countertransport, gave a reduction in H+-driven Na+ influx (by 31 and 37%, respectively). This effect was additive, and a 66% reduction in H+-driven Na+ influx was found in the presence of both inhibitors. Internal acidification, a stimulus for Na+-H+ exchange, enhanced Na+-Li+ countertransport activity (from 287 +/- 55 to 1213 +/- 165 micromol x Lcell(-1) h(-1), mean +/- SEM, P = 0.003). This transport remained sensitive to phloretin under both conditions. Conversely, external acidification decreased Na+-Li+ countertransport activity (as expected for a Na+-H+ exchanger). Competition between internal H+ and Li+ or Na+ for a common binding site was present. Finally, similar kinetic parameters for external Na+ characterized Na+-Li+ countertransport and the phloretin-sensitive component of H+-driven Na+ influx. These findings suggest that both Na+-Li+ countertransport and the amiloride-insensitive, phloretin-sensitive component of H+-driven Na+ influx can be mediated by a previously unrecognized novel amiloride-insensitive Na+-H+ exchange isoform in human erythrocytes. Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Amiloride; Antiporters; Binding, Competitive; Drug Synergism; Erythrocytes; Humans; Hydrogen-Ion Concentration; Ion Transport; Lithium; Membrane Potentials; Phloretin; Protein Isoforms; Sodium; Sodium-Hydrogen Exchangers; Valinomycin | 1998 |
Responses of salivary acinar cells to intracellular alkalinization.
Responses of rat submandibular acini to intracellular alkalinization were investigated. Intracellular alkalinization was induced by addition of NH4Cl or methyl amines, or by prepulse with Na butyrate. Only partial recovery occurred following Na butyrate prepulse or methylated amine addition, but full recovery was observed following addition of NH4Cl. The latter recovery was DIDS and dimethylamiloride-insensitive but was inhibited by bumetanide or high [K+] and stimulated in Na(+)-free buffer and by ouabain. Acetylcholine stimulated recovery from NH4Cl- or Na butyrate pre-pulse-induced alkalinization and reduced the extent of alkalinization induced by methylated amines. Acetylcholine-stimulated recovery from NH4Cl-induced alkalinization was mimicked by substance P or ionomycin and was partially Ca(2+)-dependent. This stimulated recovery was bumetanide-insensitive but was partially sensitive to charybdotoxin. Taken together, these data indicate that in unstimulated cells, recovery from alkalinization induced by NH4Cl occurs by bumetanide-sensitive transport of the NH4+ ion, that DIDS-inhibitable anion transport contributes little to this recovery, and that acetylcholine and other Ca(2+)-elevating agents accelerate recovery from NH4Cl-induced alkaline challenge by a mechanism insensitive to bumetanide, DIDS, ouabain, and dimethylamiloride but sensitive to extracellular Ca2+ and to charybdotoxin. Partial recovery from alkaline challenge can also occur in the absence of NH4+ ions, and acetylcholine also stimulates this mode of recovery. Together, these data suggest that these cells have little intrinsic ability to recover from intracellular alkalinization and that the NH4+ ion may be a surrogate for K+ in at least two ion transport pathways. Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Amiloride; Ammonium Chloride; Animals; Bumetanide; Butyrates; Butyric Acid; Calcium; Cells, Cultured; Charybdotoxin; Hydrogen-Ion Concentration; Kinetics; Male; Nigericin; Ouabain; Potassium; Rats; Rats, Sprague-Dawley; Scorpion Venoms; Submandibular Gland; Time Factors; Valinomycin | 1994 |