valinomycin has been researched along with 1-2-oleoylphosphatidylcholine* in 8 studies
8 other study(ies) available for valinomycin and 1-2-oleoylphosphatidylcholine
Article | Year |
---|---|
Effects of valinomycin doping on the electrical and structural properties of planar lipid bilayers supported on polyelectrolyte multilayers.
Supported Lipid Bilayers (SLBs) on Polyelectrolyte Multilayers (PEMs) have large potential as models for developing sensor devices. SLBs can be designed with receptors and channels, which benefit from the biological environment of the lipid layers, to create a sensing interface for ions and biomarkers. PEMs assembled by the Layer-by-Layer (LBL) technique and used as supports for a lipid bilayer enable an easy integration of the bilayer on almost any surface and device. For electrochemical sensors, LBL assembly enables nanoscale tunable separation of the lipid bilayer from the electrode surface, avoiding undesired effects of the electrode surface on the lipid bilayers. We study the fabrication of valinomycin-doped SLBs on PEMs as a model system for biophysical studies and for selective ion sensing. SLBs are fabricated from dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylserine (DOPS) 50:50 vesicles doped with valinomycin, as a K Topics: Electricity; Electrodes; Lipid Bilayers; Phosphatidylcholines; Polyelectrolytes; Surface Properties; Valinomycin | 2021 |
Functional reconstitution of cell-free synthesized purified K
The study of ion channel activity and the screening of possible inhibitor molecules require reliable methods for production of active channel proteins, their insertion into artificial membranes and for the measurement of their activity. Here we report on cell-free expression of soluble and active K Topics: Elapid Venoms; Escherichia coli; Fluorescent Dyes; Gene Expression; Genetic Vectors; Humans; Isoxazoles; Kv1.1 Potassium Channel; Kv1.3 Potassium Channel; Membrane Potentials; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylserines; Proteolipids; Recombinant Proteins; Subcellular Fractions; Valinomycin | 2017 |
Fatty acids as modulators of cytochrome c oxidase in proteoliposomes.
The control of cytochrome c oxidase turnover in proteoliposomes by membrane potential (delta psi) and by pH gradient (delta pH) is probably kinetic in nature, and inhibition by valinomycin and stimulation by nigericin indicate that delta pH exerts a greater influence than does an equivalent delta psi. Oleic acid at 100 microM removes all delta psi and delta pH control, whereas a similar concentration of palmitic acid increases turnover but does not completely abolish control. Valinomycin acts synergistically with both fatty acids, indicating that the latter can act as H+/K+ exchangers, but neither fatty acid alone markedly affects delta pH, showing that they cannot fully mimic nigericin. Oleate, but not palmitate, diminishes delta psi, and can move electrophoretically as oleate anion. Submicromolar palmitic acid concentrations partly stimulate turnover in delta psi- and delta pH-controlled proteoliposomes, as reported by Labonia, Muller and Azzi [(1988) Biochem. J. 254, 130-145], which might represent a direct effect on cytochrome c oxidase. The ubiquity of fatty acids in biological membranes suggests that these substances might be responsible for limiting respiratory control and enzyme activity in vivo. Topics: Animals; Cattle; Electron Transport Complex IV; Fatty Acids, Nonesterified; Hydrogen-Ion Concentration; Ionophores; Kinetics; Liposomes; Membrane Potentials; Mitochondria, Heart; Nigericin; Oleic Acid; Palmitic Acid; Phosphatidylcholines; Phosphatidylethanolamines; Proteolipids; Valinomycin | 1996 |
Interactions of cyclosporine and some derivatives with model membranes: binding and ion permeability changes.
Topics: Adsorption; Calcimycin; Cyclosporine; Cyclosporins; Fluorescence Polarization; Immunosuppression Therapy; Kinetics; Liposomes; Molecular Structure; Phosphatidylcholines; Sodium; Structure-Activity Relationship; Valinomycin | 1994 |
Calcium-ganglioside interactions and synaptic plasticity: effect of calcium on specific ganglioside/peptide (valinomycin, gramicidin A)-complexes in mixed mono- and bilayers.
A controlled exchange of calcium between the extracellular space (mM Ca2+) and the neuroplasm (microM Ca2+) is considered to be an essential prerequisite for almost every stage of neuronal activity. Our research interest is focused on those compounds, which due to their physico-chemical properties and localization within the synaptic membrane might fulfill the task as neuromodulators for functional synaptic proteins. Because of this specific binding properties towards calcium and their peculiar interactions with calcium in model systems gangliosides (amphiphilic sialic acid containing glycosphingolipids) are favorite candidates for a functional involvement in synaptic transmission of information. In this study we used monolayers to investigate the molecular packing and surface potential at the air/water interface, the interaction of gangliosides with the depsipeptide valinomycin (= monovalent ion carrier), and its influenceability by calcium. Furthermore we looked at calcium effects on the single channel conductance and mean channel life-time of the monovalent ion channel gramicidin A in mixed PC/ganglioside bilayers. In pure ganglioside monolayers the addition of 0.01 mM Ca2+ induces monolayer condensation, a rise in collapse pressure (= higher film stability), a shift of phase transition (= change of conformation), and a more negative head group potential (change of electric properties). In mixed ganglioside-valinomycin monolayers the addition of Ca2+ causes phase separation and/or aggregate formation between the ganglioside and the peptide. Single channel conductance fluctuations as well as mean channel life-time were analyzed for gramicidin A incorporated into binary mixed black lipid membranes of negatively charged gangliosides (GM1, GD1a, GT1b, GMix) and neutral lecithin (DOPC) in different molar ratios. At monovalent electrolyte concentrations up to < 250 mM CsCl the single channel conductance was significantly larger in the negatively charged mixed DOPC/ganglioside membranes than in the neutral DOPC membrane. Additionally, in the presence of gangliosides the mean channel life-time is increased. The addition of calcium (0.05 mM) induced a reduction of single channel conductance of gramicidin A in DOPC- and mixed DOPC/ganglioside membranes. These physico-chemical data in connection with new electromicroscopical evidences for a precise localization of calcium, a calcium pump (Ca(2+)-ATPase), a clustered arrangement of gangliosides in synaptic termina Topics: Animals; Calcium; Gangliosides; Gramicidin; Kinetics; Lipid Bilayers; Liposomes; Membrane Potentials; Models, Neurological; Neuronal Plasticity; Phosphatidylcholines; Phosphatidylserines; Pressure; Structure-Activity Relationship; Surface Properties; Synapses; Synaptic Membranes; Valinomycin | 1992 |
Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
Experiments with large unilamellar dioleoylphosphatidylcholine vesicles were carried out in order to study the effect of membrane potential on the fluorescence of Oxonol VI. A partition equilibrium of dye between membrane and water was found to exist with a partition coefficient gamma identical to c lipid/c water of about 19,000 (at zero voltage). In the presence of an inside-positive membrane potential, the negatively charged dye accumulates in the intravesicular aqueous space according to a Nernst equilibrium. This leads to an increased adsorption of dye to the inner lipid monolayer and to a concomitant increase of fluorescence. The fluorescence change can be calibrated as a function of transmembrane voltage by generating a potassium diffusion potential in the presence of valinomycin. The intrinsic fluorescence of the membrane-bound dye is not affected by voltage; the whole influence of voltage on the fluorescence results from voltage-dependent partitioning of the dye between water and membrane. The voltage dependence of the apparent partition coefficient can be quantitatively described by a three-capacitor model in which the dye is assumed to bind to adsorption planes located on the hydrocarbon side of the membrane/solution interface. Oxonol VI was found to be suitable for detecting changes of membrane potential associated with the activity of the (Na+ + K+)-ATPase in reconstituted vesicles. When ATP is added to the external medium, pump molecules with the ATP-binding side facing outward become activated; this results in a translocation of net positive charge towards the vesicle interior. Under this condition, fluorescence changes corresponding to (inside-positive) potentials of up to 150-200 mV are observed. After the build-up of the membrane potential, a quasi-stationary state is reached in which the pump current is compensated by a back-flow of charge through passive conductance pathways. Topics: Adsorption; Diffusion; Fluorescence; Fluorescent Dyes; Indicators and Reagents; Ion Channels; Isoxazoles; Liposomes; Membrane Potentials; Oxazoles; Phosphatidylcholines; Potassium; Sodium; Sodium-Potassium-Exchanging ATPase; Solutions; Spectrometry, Fluorescence; Spectrophotometry; Valinomycin | 1987 |
Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase.
A fluorescence method is described for the measurement of ATP-driven ion fluxes in lipid vesicles containing purified Na,K-ATPase. The membrane voltage of enzyme containing vesicles was measured by using a voltage-sensitive indocyanine dye. By addition of valinomycin the vesicle membrane is made selectively permeable to K+ so that the membrane voltage approaches the Nernst potential for K+. With constant external K+ concentration, the time course of internal K+ concentration can be continuously measured as change of the fluorescence signal after activation of the pump. The optical method has a higher time resolution than tracer-flux experiments and allows an accurate determination of initial flux rates. From the temperature dependence of active K+ transport its activation energy was determined to be 115 kJ/mol. ATP-stimulated electrogenic pumping can be measured as fast fluorescence change when the membrane conductance is low (i.e., at low or zero valinomycin concentration). In accordance with expectation, the amplitude of the fast signal change increases with decreasing passive ion permeability of the vesicle membrane. The resolution of the charge movement is so high that a few pump turnovers can be easily detected. Topics: Animals; Calorimetry; Cell Membrane; Electric Conductivity; Kidney Medulla; Liposomes; Mathematics; Membrane Lipids; Models, Biological; Phosphatidylcholines; Potassium; Rabbits; Sodium-Potassium-Exchanging ATPase; Spectrometry, Fluorescence; Valinomycin | 1985 |
Voltage-dependent trans-bilayer orientation of melittin.
Topics: Bee Venoms; Cholesterol; Electric Conductivity; Lipid Bilayers; Melitten; Membrane Potentials; Phosphatidylcholines; Pronase; Serum Albumin, Bovine; Spectrophotometry; Trypsin; Valinomycin | 1982 |