valine and quisqualic acid

valine has been researched along with quisqualic acid in 46 studies

Research

Studies (46)

TimeframeStudies, this research(%)All Research%
pre-199041 (89.13)18.7374
1990's3 (6.52)18.2507
2000's2 (4.35)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Brugger, F; Fagg, GE; Olpe, HR; Pozza, MF1
Akerman, KE; Holopainen, I1
Aanonsen, LM; Wilcox, GL1
Fischbach, GD; O'Brien, RJ1
Cherubini, E; King, AE; Nistri, A1
Christensen, BN; O'Dell, TJ1
Buckley, KS; Collins, GG1
Brugger, F; Olpe, HR; Pozza, MF; Steinmann, MW1
Chapman, B; Miller, KD; Stryker, MP1
Akoev, GN; Andrianov, IuN; Bromm, B; Sabo, T; Sherman, NO1
Miyachi, E; Murakami, M1
King, AE; Nistri, A; Rovira, C1
Lodge, D; Martin, D1
Hablitz, JJ1
Martin, MR1
Baudry, M; Cummins, JT; Kessler, M; Lynch, G; Way, S1
Curry, K; Magnuson, DS; McLennan, H; Peet, MJ1
Gregersen, H; McLennan, H; Peet, MJ1
Koerner, JF; Marks, RL; Robinson, MB; Whittemore, ER1
King, AE; Nistri, A1
Costa, E; Nicoletti, F; Wroblewski, JT1
Ballanyi, K; Endres, W; Grafe, P; Serve, G1
Cherniack, NS; Mitra, J; Overholt, JL; Prabhakar, NR1
Crepel, F; Dupont, JL; Gardette, R1
Drejer, J; Honoré, T; Schousboe, A1
Bockaert, J; Kemp, DE; Schmidt, BH; Sebben, M; Sladeczek, F; Weiss, S1
Choi, DW; Koh, JY; Peters, S1
Chang, HS; Kano, M; Kato, M1
Kihara, M; Kubo, T1
Carter, CJ; L'Heureux, R; Scatton, B1
Nishizaki, T; Okada, Y1
Dingledine, R; Verdoorn, TA1
King, AE; Thompson, SW; Urban, L; Woolf, CJ1
Astier, H; Tapia-Arancibia, L1
Raigorodsky, G; Urca, G1
Lovinger, DM; Weight, FF1
Lauritzen, M; Nicholson, C; Okada, Y; Rice, ME1
McLennan, H2
Collingridge, GL; Kehl, SJ; McLennan, H1
Crunelli, V; Forda, S; Kelly, JS1
Joëls, M; Urban, IJ1
Mayer, ML; Westbrook, GL1
Chung, SH; Premkumar, L1
Empson, RM; Gee, VJ; Newberry, NR; Sheardown, MJ1
Carmignoto, G; Fellin, T; Gobbo, S; Pozzan, T; Sebelin, A; Zonta, M1

Other Studies

46 other study(ies) available for valine and quisqualic acid

ArticleYear
Electrophysiological characterization of a novel potent and orally active NMDA receptor antagonist: CGP 37849 and its ethylester CGP 39551.
    European journal of pharmacology, 1990, Jun-21, Volume: 182, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Animals; Behavior, Animal; Electrophysiology; Hippocampus; Iontophoresis; Male; Oxadiazoles; Piperazines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Spinal Cord; Substantia Nigra; Valine

1990
Efflux of 45calcium from cultured primary astrocytes: effects of glutamate receptor agonists and antagonists.
    Neuropharmacology, 1990, Volume: 29, Issue:8

    Topics: Animals; Animals, Newborn; Astrocytes; Calcium; Calcium Radioisotopes; Cells, Cultured; Excitatory Amino Acid Antagonists; Glutamates; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Valine

1990
Phencyclidine selectively blocks a spinal action of N-methyl-D-aspartate in mice.
    Neuroscience letters, 1986, Jun-18, Volume: 67, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Dipeptides; Drug Interactions; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Glutamates; Glutamic Acid; Injections, Spinal; Kainic Acid; Male; Mice; N-Methylaspartate; Norepinephrine; Oxadiazoles; Phencyclidine; Quisqualic Acid; Spinal Cord; Substance P; Tetrazoles; Valine

1986
Characterization of excitatory amino acid receptors expressed by embryonic chick motoneurons in vitro.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1986, Volume: 6, Issue:11

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Chick Embryo; Dose-Response Relationship, Drug; Electrophysiology; Excitatory Amino Acid Antagonists; Glutamates; In Vitro Techniques; Ion Channels; Kainic Acid; Membrane Potentials; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord; Valine

1986
A study of amino acid-activated currents recorded from frog motoneurones in vitro.
    Neuroscience letters, 1987, May-06, Volume: 76, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anterior Horn Cells; Aspartic Acid; Glutamates; Glutamic Acid; In Vitro Techniques; Ion Channels; Membrane Potentials; Motor Neurons; N-Methylaspartate; Neural Conduction; Oxadiazoles; Quisqualic Acid; Rana temporaria; Valine

1987
Horizontal cells isolated from catfish retina contain two types of excitatory amino acid receptors.
    Journal of neurophysiology, 1989, Volume: 61, Issue:6

    Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anticonvulsants; Calcium; Cations, Divalent; Cell Membrane Permeability; Cells, Cultured; Concanavalin A; Convulsants; Glutamates; Ibotenic Acid; Ictaluridae; Ion Channels; Kainic Acid; Membrane Potentials; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Retina; Valine; Zinc

1989
Antagonism of monosynaptic excitations in the mouse olfactory cortex slice by 6,7-dinitroquinoxaline-2,3-dione.
    Neuropharmacology, 1989, Volume: 28, Issue:10

    Topics: Animals; Aspartic Acid; Cerebral Cortex; In Vitro Techniques; Male; Mice; N-Methylaspartate; Oxadiazoles; Pyramidal Tracts; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, Kainic Acid; Receptors, Neurotransmitter; Reflex, Monosynaptic; Synapses; Synaptic Transmission; Valine

1989
Excitatory amino acid receptors in rat locus coeruleus. An extracellular in vitro study.
    Naunyn-Schmiedeberg's archives of pharmacology, 1989, Volume: 339, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Glutamates; In Vitro Techniques; Kainic Acid; Locus Coeruleus; Magnesium; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Valine

1989
Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors.
    Proceedings of the National Academy of Sciences of the United States of America, 1989, Volume: 86, Issue:13

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Cats; Electric Conductivity; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Visual Cortex; Visual Perception

1989
[Analysis of the effect of quisqualate, N-methyl-D- aspartate and several blockers of amino acid receptors on synaptic transmission in the ampullae of Lorenzini].
    Neirofiziologiia = Neurophysiology, 1989, Volume: 21, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Aminobutyrates; Animals; Aspartic Acid; Electric Fish; Evoked Potentials; Magnesium; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Sensory Receptor Cells; Skates, Fish; Synapses; Synaptic Transmission; Valine

1989
Coexistence of NMDA and non-NMDA receptors on turtle horizontal cells revealed using isolated retina preparations.
    Vision research, 1989, Volume: 29, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Evoked Potentials, Visual; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Retina; Turtles; Valine

1989
The excitation of frog motoneurones in vitro by the glutamate analogue, DI-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), and the effect of amino acid antagonists.
    Neuroscience letters, 1985, Mar-22, Volume: 55, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids, Dicarboxylic; Animals; Glutamates; Glutamic Acid; Ibotenic Acid; Membrane Potentials; Motor Neurons; Oxadiazoles; Oxazoles; Quisqualic Acid; Rana temporaria; Receptors, AMPA; Receptors, Drug; Spinal Cord; Synapses; Synaptic Transmission; Valine

1985
Ketamine acts as a non-competitive N-methyl-D-aspartate antagonist on frog spinal cord in vitro.
    Neuropharmacology, 1985, Volume: 24, Issue:10

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Kainic Acid; Ketamine; Magnesium; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana pipiens; Rana temporaria; Spinal Cord; Valine

1985
Action of excitatory amino acids and their antagonists on hippocampal neurons.
    Cellular and molecular neurobiology, 1985, Volume: 5, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Aminobutyrates; Animals; Aspartic Acid; Excitatory Amino Acid Antagonists; Glutamic Acid; Guinea Pigs; Hippocampus; Iontophoresis; Manganese; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Tetrodotoxin; Valine

1985
Evidence for an excitatory amino acid as the transmitter of the auditory nerve in the in vitro mouse cochlear nucleus.
    Hearing research, 1985, Volume: 20, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Action Potentials; Amino Acids; Animals; Aspartic Acid; Cochlear Nerve; Dose-Response Relationship, Drug; Evoked Potentials; Female; Kainic Acid; Male; Mice; Mice, Inbred C3H; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Receptors, Neurotransmitter; Valine; Vestibulocochlear Nerve

1985
Induction of glutamate binding sites in hippocampal membranes by transient exposure to high concentrations of glutamate or glutamate analogs.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1986, Volume: 6, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Aminobutyrates; Animals; Aspartic Acid; Binding Sites; Chlorides; Chromatography, High Pressure Liquid; Glutamates; Glutamic Acid; Hippocampus; Homocysteine; Kainic Acid; Kinetics; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Saponins; Sodium; Valine

1986
Ca2+-dependent depolarization and burst firing of rat CA1 pyramidal neurones induced by N-methyl-D-aspartic acid and quinolinic acid: antagonism by 2-amino-5-phosphonovaleric and kynurenic acids.
    Canadian journal of physiology and pharmacology, 1986, Volume: 64, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Calcium; Convulsants; Electric Conductivity; Electric Stimulation; Evoked Potentials; Hippocampus; In Vitro Techniques; Kynurenic Acid; N-Methylaspartate; Neurons; Oxadiazoles; Pyramidal Tracts; Pyridines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats; Valine

1986
2-Amino-5-phosphonovalerate and Co2+ selectively block depolarization and burst firing of rat hippocampal CA1 pyramidal neurones by N-methyl-D-aspartate.
    Neuroscience, 1986, Volume: 17, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Aspartic Acid; Cobalt; Evoked Potentials; Hippocampus; Iontophoresis; N-Methylaspartate; Neurons; Oxadiazoles; Pyramidal Tracts; Quisqualic Acid; Rats; Tetrodotoxin; Valine

1986
Exposure of hippocampal slices to quisqualate sensitizes synaptic responses to phosphonate-containing analogues of glutamate.
    Brain research, 1986, Aug-27, Volume: 381, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Aminobutyrates; Animals; Evoked Potentials; Glutamates; Hippocampus; In Vitro Techniques; Male; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Stereoisomerism; Synapses; Valine

1986
Blockade by D-aminophosphonovalerate or Mg2+ of excitatory amino acid-induced responses on spinal motoneurons in vitro.
    Advances in experimental medicine and biology, 1986, Volume: 203

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Electric Conductivity; Excitatory Amino Acid Antagonists; In Vitro Techniques; Magnesium; Membrane Potentials; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana temporaria; Synaptic Transmission; Valine

1986
Magnesium ions inhibit the stimulation of inositol phospholipid hydrolysis by endogenous excitatory amino acids in primary cultures of cerebellar granule cells.
    Journal of neurochemistry, 1987, Volume: 48, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cells, Cultured; Cerebellum; Drug Synergism; Glutamates; Glutamic Acid; Hydrolysis; Inositol Phosphates; Kainic Acid; Magnesium; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Sugar Phosphates; Valine; Veratridine

1987
Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord.
    Neuroscience letters, 1986, Dec-03, Volume: 72, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anterior Horn Cells; Anura; Aspartic Acid; Hydrogen-Ion Concentration; In Vitro Techniques; Kainic Acid; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Valine

1986
Respiratory and vasomotor effects of excitatory amino acid on ventral medullary surface.
    Brain research bulletin, 1987, Volume: 18, Issue:5

    Topics: 2-Amino-5-phosphonovalerate; Animals; Apnea; Aspartic Acid; Blood Pressure; Carotid Sinus; Cats; Female; Glutamates; Kainic Acid; Male; Medulla Oblongata; N-Methylaspartate; Oxadiazoles; Phrenic Nerve; Quisqualic Acid; Respiration; Vagotomy; Valine; Vasomotor System

1987
Postnatal development of the chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study.
    Brain research, 1987, Volume: 431, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cerebellar Cortex; Glutamates; Glutamic Acid; In Vitro Techniques; N-Methylaspartate; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats; Rats, Inbred Strains; Reaction Time; Valine

1987
Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1987, Volume: 7, Issue:9

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Binding Sites; Cerebral Cortex; gamma-Aminobutyric Acid; Kainic Acid; Mice; N-Methylaspartate; Neurons; Oxadiazoles; Potassium; Quisqualic Acid; Valine

1987
Dual action of excitatory amino acids on the metabolism of inositol phosphates in striatal neurons.
    Molecular pharmacology, 1987, Volume: 32, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Carbachol; Cells, Cultured; Corpus Striatum; Glutamates; Inositol Phosphates; Mice; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Sugar Phosphates; Valine

1987
Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1988, Volume: 8, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Cerebral Cortex; Glutamates; Glutamic Acid; Isomerism; Kainic Acid; Mice; N-Methylaspartate; Neurons; Neurotoxins; Oxadiazoles; Quisqualic Acid; Valine

1988
The glutamate receptor subtype mediating parallel fibre-Purkinje cell transmission in rabbit cerebellar cortex.
    Neuroscience research, 1988, Volume: 5, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Animals; Cerebellar Cortex; Dipeptides; Glutamates; Kynurenic Acid; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rabbits; Receptors, Glutamate; Receptors, Neurotransmitter; Synaptic Transmission; Valine

1988
Evidence of N-methyl-D-aspartate receptor-mediated modulation of the aortic baroreceptor reflex in the rat nucleus tractus solitarii.
    Neuroscience letters, 1988, Apr-22, Volume: 87, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aorta; Blood Pressure; Glutamates; Glutamic Acid; Heart Rate; Kainic Acid; Male; Medulla Oblongata; Oxadiazoles; Pressoreceptors; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine

1988
Differential control by N-methyl-D-aspartate and kainate of striatal dopamine release in vivo: a trans-striatal dialysis study.
    Journal of neurochemistry, 1988, Volume: 51, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Atropine; Carbachol; Corpus Striatum; Dopamine; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Tetrodotoxin; Valine

1988
Effects of excitatory amino acids on the oxygen consumption of hippocampal slices from the guinea pig.
    Brain research, 1988, Jun-14, Volume: 452, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Aspartic Acid; Glutamates; Guinea Pigs; Hippocampus; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Oxadiazoles; Oxygen Consumption; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spider Venoms; Valine

1988
Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology.
    Molecular pharmacology, 1988, Volume: 34, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Chlorides; Female; Ibotenic Acid; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oocytes; Oxadiazoles; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Drug; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Xenopus

1988
An intracellular analysis of amino acid induced excitations of deep dorsal horn neurones in the rat spinal cord slice.
    Neuroscience letters, 1988, Jul-08, Volume: 89, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Electrophysiology; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; In Vitro Techniques; Intracellular Membranes; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Spinal Cord; Tetrodotoxin; Valine

1988
Glutamate stimulates somatostatin release from diencephalic neurons in primary culture.
    Endocrinology, 1988, Volume: 123, Issue:5

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Diencephalon; Glutamates; Glutamic Acid; Kainic Acid; Magnesium; N-Methylaspartate; Neurons; Oxadiazoles; Phencyclidine; Potassium; Quisqualic Acid; Rats; Somatostatin; Tetrodotoxin; Valine; Veratridine

1988
Behavioral classification of excitatory amino acid receptors in mouse spinal cord.
    European journal of pharmacology, 1988, Aug-24, Volume: 153, Issue:2-3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Behavior, Animal; Glutamates; Glutamic Acid; Glutamine; Kainic Acid; Male; Mice; Mice, Inbred ICR; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord; Valine

1988
Glutamate induces a depolarization of adult rat dorsal root ganglion neurons that is mediated predominantly by NMDA receptors.
    Neuroscience letters, 1988, Dec-05, Volume: 94, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Electrophysiology; Ganglia, Spinal; Glutamates; Glutamic Acid; Glycine; Kainic Acid; Magnesium; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine

1988
Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum.
    Brain research, 1988, Dec-20, Volume: 475, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Aspartic Acid; Cerebellum; Electric Stimulation; In Vitro Techniques; Kainic Acid; Magnesium; N-Methylaspartate; Neural Inhibition; Oxadiazoles; Quisqualic Acid; Turtles; Valine

1988
The isomers of 2-amino-5-phosphonovalerate as excitatory amino acid antagonists--a reappraisal.
    European journal of pharmacology, 1982, Apr-08, Volume: 79, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Oxadiazoles; Quisqualic Acid; Rats; Spinal Cord; Stereoisomerism; Time Factors; Valine

1982
The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro.
    The Journal of physiology, 1983, Volume: 334

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Action Potentials; Amino Acids; Animals; Aspartic Acid; Dipeptides; Hippocampus; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Valine

1983
Blockade of amino acid-induced depolarizations and inhibition of excitatory post-synaptic potentials in rat dentate gyrus.
    The Journal of physiology, 1983, Volume: 341

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Dipeptides; Evoked Potentials; Hippocampus; In Vitro Techniques; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Rats; Synapses; Valine

1983
Amino acid neurotransmission between fimbria-fornix fibers and neurons in the lateral septum of the rat: a microiontophoretic study.
    Experimental neurology, 1984, Volume: 84, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Excitatory Amino Acid Antagonists; Glutamates; Hippocampus; Iontophoresis; Male; N-Methylaspartate; Nerve Fibers; Neural Pathways; Neuromuscular Junction; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Septal Nuclei; Synaptic Transmission; Valine

1984
A comparison of the effects of N-methyl-D-aspartate and quinolinate on central neurones of the rat.
    Neuroscience letters, 1984, May-04, Volume: 46, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Iontophoresis; Microinjections; N-Methylaspartate; Neurons; Oxadiazoles; Pyridines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats; Somatosensory Cortex; Spinal Cord; Stimulation, Chemical; Valine

1984
Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp.
    The Journal of physiology, 1984, Volume: 354

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Culture Techniques; Electric Conductivity; Glutamates; Glutamic Acid; Homocysteine; Kainic Acid; Membrane Potentials; Mice; Mice, Inbred C57BL; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Spinal Cord; Valine

1984
Activation of K+ channels by stimulation of metabotropic glutamate receptors.
    Neuroreport, 1995, Mar-27, Volume: 6, Issue:5

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cycloleucine; Glutamic Acid; Hippocampus; In Vitro Techniques; Neurons; Potassium Channels; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Stimulation, Chemical; Valine

1995
Chlormethiazole inhibits epileptiform activity by potentiating GABA(A) receptor function.
    Brain research, 2000, Nov-24, Volume: 884, Issue:1--2

    Topics: Action Potentials; Animals; Bicuculline; Cerebral Cortex; Chlormethiazole; Dose-Response Relationship, Drug; Epilepsy; gamma-Aminobutyric Acid; Male; N-Methylaspartate; Neurons; Neuroprotective Agents; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate; Tetrodotoxin; Valine

2000
Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes.
    The Journal of physiology, 2003, Dec-01, Volume: 553, Issue:Pt 2

    Topics: Animals; Astrocytes; Calcium; Calcium Signaling; Cell Line; Cells, Cultured; Coculture Techniques; Cycloleucine; Cytosol; Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide; Dinoprostone; Epithelial Cells; Glutamic Acid; Green Fluorescent Proteins; Humans; Indomethacin; Luminescent Proteins; Microscopy, Confocal; Microscopy, Fluorescence; Patch-Clamp Techniques; Prostaglandins; Quisqualic Acid; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP1 Subtype; Transfection; Valine; Xanthones

2003