valencene and farnesyl-pyrophosphate

valencene has been researched along with farnesyl-pyrophosphate* in 3 studies

Other Studies

3 other study(ies) available for valencene and farnesyl-pyrophosphate

ArticleYear
Deficiency of valencene in mandarin hybrids is associated with a deletion in the promoter region of the valencene synthase gene.
    BMC plant biology, 2019, Mar-13, Volume: 19, Issue:1

    Valencene is a major sesquiterpene in citrus oil and biosynthesized by valencene synthase (Cstps1; EC: 4.2.3.73) from the 15-carbon substrate farnesyl diphosphate. It is abundant in juice of some mandarins (e.g. Citrus reticulata Blanco cv. Fortune), however, it is undetectable in others (e.g. C. reticulata Blanco cv. Murcott), We have discovered that the Murcott mandarin Cstps1 gene expression is severely reduced. A previous genetic mapping study using an F1 population of Fortune × Murcott found that the segregation of valencene production in fruit exhibited a Mendelian inheritance ratio of 1:1. There was only one dominant locus associated with valencene content detected on the mandarin genetic map. The goal of this study was to understand the molecular mechanism underlying the valencene deficiency observed in some citrus hybrids.. There was a clear relationship between presence or absence of the valencene synthase gene (Cstps1) expression, and presence or absence of valencene among randomly selected mandarin hybrids. Cloning the coding regions of Cstps1 from Fortune and Murcott mandarin, and aligning with previous reported Valencia orange Cstps1 sequence, showed that they both exhibited extremely high similarity with the known Cstps1. By further cloning and analyzing the promoter region of Cstps1 from Valencia, Fortune and Murcott, a 12-nucleotide deletion at approximately - 270 bp from the Cstps1 coding region was only found in Murcott. Three binary vectors, designated as p1380-FortP-GUSin, p1380-MurcP-GUSin and p1380-MurcP(+ 12)-GUSin, were developed for promoter activity analysis. Transient over-expression of Fortune Cstps1 promoter in sweet orange showed notable GUS activity, but the Murcott Cstps1 promoter did not. In addition, by re-inserting the 12-nucleotide fragment, the activity of the Murcott Cstps1 promoter was mostly recovered.. The deficiency of valencene production in some mandarins is probably due to a 12-nucleotide deletion in the promoter region of the Cstps1, which could be a crucial switch of Cstps1 transcription. Our results further enhanced the understanding of valencene biosynthesis in citrus.

    Topics: Alkyl and Aryl Transferases; Chromosome Mapping; Citrus; Fruit; Plant Proteins; Polyisoprenyl Phosphates; Promoter Regions, Genetic; Sequence Deletion; Sesquiterpenes

2019
(+)-Valencene production in Nicotiana benthamiana is increased by down-regulation of competing pathways.
    Biotechnology journal, 2015, Volume: 10, Issue:1

    Plant sesquiterpenes, such as (+)-valencene, artemisinin, and farnesene are valuable chemicals for use as aromatics, pharmaceuticals, and biofuels. Plant-based production systems for terpenoids critically depend on the availability of farnesyl diphosphate (FPP). Currently, these systems show insufficient yields, due to the competition for FPP of newly introduced pathways with endogenous ones. In this study, for the first time an RNAi strategy aiming at silencing of endogenous pathways for increased (+)-valencene production was employed. Firstly, a transient production system for (+)-valencene in Nicotiana benthamiana was set up using agroinfiltration. Secondly, silencing of the endogenous 5-epi-aristolochene synthase (EAS) and squalene synthase (SQS) that compete for the FPP pool was deployed. This resulted in a N. benthamiana plant that produces (+)-valencene as a prevalent volatile with a 2.8-fold increased yield. Finally, the size of the FPP pool was increased by overexpression of enzymes that are rate-limiting in FPP biosynthesis. Combined with silencing of EAS and SQS, no further increase of (+)-valencene production was observed, but emission of farnesol. Formation of farnesol, which is a breakdown product of FPP, indicates that overproducing sesquiterpenes is no longer limited by FPP availability in the cytosol. This study shows that metabolic engineering of plants can effectively be used for increased production of desired products in plants.

    Topics: Alkyl and Aryl Transferases; Down-Regulation; Geranyltranstransferase; Hydroxymethylglutaryl CoA Reductases; Metabolic Engineering; Nicotiana; Plant Proteins; Plants, Genetically Modified; Polyisoprenyl Phosphates; RNA Interference; Sesquiterpenes

2015
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
    Journal of biotechnology, 2014, Dec-10, Volume: 191

    The sesquiterpene (+)-valencene is an aroma compound of citrus fruits and is used to flavor foods and drinks. Biosynthesis of (+)-valencene starts from farnesyl pyrophosphate, an intermediate of carotenoid biosynthesis. Corynebacterium glutamicum, the workhorse of the million-ton scale amino acid industry, is naturally pigmented as it synthesizes the rare fifty carbon atoms (C50) containing carotenoid decaprenoxanthin. Since the carotenoid pathway of this Gram-positive bacterium has previously been engineered for efficient production of several C50 and C40 carotenoids, its potential to produce a sesquiterpene was assessed. Growth of C. glutamicum was negatively affected by (+)-valencene, but overlaying n-dodecane as organic phase for extraction of (+)-valencene was shown to be biocompatible. Heterologous expression of the (+)-valencene synthase gene from the sweet orange Citrus sinensis was not sufficient to enable (+)-valencene production, likely because provision of farnesyl pyrophosphate (FPP) by endogenous prenyltransferases was too low. However, upon deletion of two endogenous prenyltransferase genes and heterologous expression of either FPP synthase gene ispA from Escherichia coli or ERG20 from Saccharomyces cerevisiae (+)-valence production by C. sinensis valencene synthase was observed. Employing the valencene synthase from Nootka cypress improved (+)-valencene titers 10 fold to 2.41±0.26mgl(-1) (+)-valencene, which is equivalent to 0.25±0.03mgg(-1) cell dry weight (CDW). This is the first report on sesquiterpene overproduction by recombinant C. glutamicum.

    Topics: Alkanes; Amino Acid Sequence; Carotenoids; Citrus; Corynebacterium glutamicum; Escherichia coli; Escherichia coli Proteins; Geranyltranstransferase; Metabolic Engineering; Polyisoprenyl Phosphates; Sequence Alignment; Sesquiterpenes

2014