urolithin-b has been researched along with ellagitannin* in 10 studies
1 trial(s) available for urolithin-b and ellagitannin
Article | Year |
---|---|
Deciphering the Human Gut Microbiome of Urolithin Metabotypes: Association with Enterotypes and Potential Cardiometabolic Health Implications.
The gut microbiota ellagitannin-metabolizing phenotypes (i.e., urolithin metabotypes [UMs]) are proposed as potential cardiovascular disease (CVD) risk biomarkers because the host blood lipid profile is reported to be associated with specific UMs. However, the link for this association remains unknown so far.. The gut microbiome of 249 healthy individuals is analyzed using 16S rDNA sequencing analysis. Individuals are also stratified by UMs (UM-A, UM-B, and UM-0) and enterotypes (Bacteroides, Prevotella, and Ruminococcus). Associations of UMs discriminating bacteria with CVD risk markers are investigated. Distribution and gut microbiota composition of UMs and enterotypes are not coincident. Almost half of the discriminating genera between UM-A and UM-B belongs to the Coriobacteriaceae family. UM-B individuals present higher blood cholesterol levels and higher alpha-diversity, including Coriobacteriaceae family, than those of UM-A. Coriobacteriaceae, whose abundance is the highest in UM-B, is positively correlated with total cholesterol, LDL cholesterol, and body mass index.. Results herein suggest that the family Coriobacteriaceae could be a link between individuals' UMs and their blood cholesterol levels. Further research is needed to explore the mechanisms of the host metabolic phenotype, including cholesterol excretion products, to modulate this bacterial family. Topics: Adult; Aged; Cardiovascular Diseases; Cholesterol; Coumarins; Feces; Female; Gastrointestinal Microbiome; Humans; Hydrolyzable Tannins; Juglans; Lythraceae; Male; Microbiota; Middle Aged; Overweight | 2019 |
9 other study(ies) available for urolithin-b and ellagitannin
Article | Year |
---|---|
The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome.
Urolithins are microbial metabolites produced after consumption of ellagitannin-containing foods such as pomegranates and walnuts. Parallel to isoflavone-metabolizing phenotypes, ellagitannin-metabolizing phenotypes (urolithin metabotypes A, B and 0; UM-A, UM-B and UM-0, respectively) can vary among individuals depending on their body mass index (BMI), but correlations between urolithin metabotypes (UMs) and cardiometabolic risk (CMR) factors are unexplored. We investigated the association between UMs and CMR factors in individuals with different BMI and health status.. UM was identified using UPLC-ESI-qToF-MS in individuals consuming pomegranate or nuts. The associations between basal CMR factors and the urine urolithin metabolomic signature were explored in 20 healthy normoweight individuals consuming walnuts (30 g/d), 49 healthy overweight-obese individuals ingesting pomegranate extract (450 mg/d) and 25 metabolic syndrome (MetS) patients consuming nuts (15 g-walnuts, 7.5 g-hazelnuts and 7.5 g-almonds/d).. Correlations between CMR factors and urolithins were found in overweight-obese individuals. Urolithin-A (mostly present in UM-A) was positively correlated with apolipoprotein A-I (P ≤ 0.05) and intermediate-HDL-cholesterol (P ≤ 0.05) while urolithin-B and isourolithin-A (characteristic from UM-B) were positively correlated with total-cholesterol, LDL-cholesterol (P ≤ 0.001), apolipoprotein B (P ≤ 0.01), VLDL-cholesterol, IDL-cholesterol, oxidized-LDL and apolipoprotein B:apolipoprotein A-I ratio (P ≤ 0.05). In MetS patients, urolithin-A only correlated inversely with glucose (P ≤ 0.05). Statin-treated MetS patients with UM-A showed a lipid profile similar to that of healthy normoweight individuals while a poor response to lipid-lowering therapy was observed in MB patients.. UMs are potential CMR biomarkers. Overweight-obese individuals with UM-B are at increased risk of cardiometabolic disease, whereas urolithin-A production could protect against CMR factors. Further research is warranted to explore these associations in larger cohorts and whether the effect of lipid-lowering drugs or ellagitannin-consumption on CMR biomarkers depends on individuals' UM.. NCT01916239 (https://clinicaltrials.gov/ct2/show/NCT01916239) and ISRCTN36468613 (http://www.isrctn.com/ISRCTN36468613). Topics: Adult; Biomarkers; Body Mass Index; Body Weight; Cardiovascular Diseases; Coumarins; Female; Fruit; Gastrointestinal Microbiome; Humans; Hydrolyzable Tannins; Juglans; Lipids; Lythraceae; Male; Metabolic Syndrome; Middle Aged; Nuts; Obesity; Overweight; Plant Extracts; Risk Factors | 2018 |
Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract.
A TWIN-SHIME system was used to compare the metabolism of pomegranate polyphenols by the gut microbiota from two individuals with different urolithin metabotypes. Gut microbiota, ellagitannin metabolism, short-chain fatty acids (SCFA), transport of metabolites, and phase II metabolism using Caco-2 cells were explored. The simulation reproduced the in vivo metabolic profiles for each metabotype. The study shows for the first time that microbial composition, metabolism of ellagitannins, and SCFA differ between metabotypes and along the large intestine. The assay also showed that pomegranate phenolics preserved intestinal cell integrity. Pomegranate polyphenols enhanced urolithin and propionate production, as well as Akkermansia and Gordonibacter prevalence with the highest effect in the descending colon. The system provides an insight into the mechanisms of pomegranate polyphenol gut microbiota metabolism and absorption through intestinal cells. The results obtained by the combined SHIME/Caco-2 cell system are consistent with previous human and animal studies and show that although urolithin metabolites are present along the gastrointestinal tract due to enterohepatic circulation, they are predominantly produced in the distal colon region. Topics: Animals; Bacteria; Coumarins; Fatty Acids, Volatile; Gastrointestinal Microbiome; Gastrointestinal Tract; Humans; Hydrolyzable Tannins; Intestinal Mucosa; Intestines; Lythraceae; Plant Extracts; Polyphenols | 2017 |
Soy protein isolate does not affect ellagitannin bioavailability and urolithin formation when mixed with pomegranate juice in humans.
We investigated the effect of mixing soy protein isolate and pomegranate juice (PJ) on the bioavailability and metabolism of ellagitannins (ETs) in healthy volunteers. Eighteen healthy volunteers consumed PJ alone or PJ premixed with soy protein isolate (PJSP). The concentration of plasma ellagic acid (EA) and urine urolithins was measured. There was no significant difference in plasma EA over a 6-h period between the two interventions. While the maximum concentration of plasma EA after PJSP consumption was slightly but significantly lower than after PJ consumption, EA remained in the plasma longer with an elimination half-life t1/2E at 1.36±0.59 versus 1.06±0.47h for PJSP and PJ consumption, respectively. Urinary urolithin A, B and C was not significantly different between the two interventions. In conclusion, premixing soy protein isolate and PJ did not affect the bioavailability or the metabolism of pomegranate ETs in healthy volunteers. Topics: Adult; Beverages; Biological Availability; Coumarins; Female; Humans; Hydrolyzable Tannins; Lythraceae; Male; Plant Extracts; Soybean Proteins; Young Adult | 2016 |
Pomegranate's Neuroprotective Effects against Alzheimer's Disease Are Mediated by Urolithins, Its Ellagitannin-Gut Microbial Derived Metabolites.
Pomegranate shows neuroprotective effects against Alzheimer's disease (AD) in several reported animal studies. However, whether its constituent ellagitannins and/or their physiologically relevant gut microbiota-derived metabolites, namely, urolithins (6H-dibenzo[b,d]pyran-6-one derivatives), are the responsible bioactive constituents is unknown. Therefore, from a pomegranate extract (PE), previously reported by our group to have anti-AD effects in vivo, 21 constituents, which were primarily ellagitannins, were isolated and identified (by HPLC, NMR, and HRESIMS). In silico computational studies, used to predict blood-brain barrier permeability, revealed that none of the PE constituents, but the urolithins, fulfilled criteria required for penetration. Urolithins prevented β-amyloid fibrillation in vitro and methyl-urolithin B (3-methoxy-6H-dibenzo[b,d]pyran-6-one), but not PE or its predominant ellagitannins, had a protective effect in Caenorhabditis elegans post induction of amyloid β(1-42) induced neurotoxicity and paralysis. Therefore, urolithins are the possible brain absorbable compounds which contribute to pomegranate's anti-AD effects warranting further in vivo studies on these compounds. Topics: Age Factors; Alzheimer Disease; Amyloid beta-Peptides; Animals; Animals, Genetically Modified; Biophysics; Blood-Brain Barrier; Caenorhabditis elegans; Chromatography, Liquid; Computer Simulation; Coumarins; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Hydrolyzable Tannins; Lythraceae; Mass Spectrometry; Models, Biological; Neuroprotective Agents; Peptide Fragments | 2016 |
Effects on Nitric Oxide Production of Urolithins, Gut-Derived Ellagitannin Metabolites, in Human Aortic Endothelial Cells.
The consumption of foodstuffs yielding circulating compounds able to maintain endothelial function by improving nitric oxide (NO) bioavailability can be considered as an effective strategy for cardiovascular disease prevention. This work assessed the in vitro effects of urolithin A, urolithin B, and urolithin B-glucuronide, ellagitannin-derived metabolites of colonic origin, on NO release and endothelial NO synthase (eNOS) activation in primary human aortic endothelial cells (HAECs). Urolithins were tested both individually at 15 μM and as a mixture of 5 μM each, at different time points. The biotransformation of these molecules in cell media due to cell metabolism was also evaluated by UHPLC-MS(n). The mix of urolithins at 5 μM significantly increased nitrite/nitrate levels following 24 h of incubation, while single urolithins at 15 μM did not modify NO bioavailability. Both the mix of urolithins at 5 μM and urolithin B-glucuronide at 15 μM activated eNOS expression. All urolithins underwent metabolic reactions, but these were limited to conjugation with sulfate moieties. This study represents a step forward in the understanding of cardiovascular health benefits of ellagitannin-rich foodstuffs and backs the idea that peripheral cells may contribute to urolithin metabolism. Topics: Aorta; Cells, Cultured; Coumarins; Endothelial Cells; Gastrointestinal Tract; Glucuronides; Humans; Hydrolyzable Tannins; Nitric Oxide | 2016 |
Phytoestrogen Metabolism by Adult Human Gut Microbiota.
Phytoestrogens are plant-derived polyphenols with a structure similar to human estrogens. The three main groups of phytoestrogens, isoflavones, ellagitannins, and lignans, are transformed into equol, urolithins, and enterolignans, respectively, by bacteria. These metabolites have more estrogenic/antiestrogenic and antioxidant activities than their precursors, and they are more bioavailable. The aim of this study was to analyze the metabolism of isoflavones, lignans and ellagitannins by gut microbiota, and to study the possible correlation in the metabolism of these three groups of phytoestrogens. In vitro fermentation experiments were performed with feces samples from 14 healthy adult volunteers, and metabolite formation was measured by HPLC-PAD and HPLC-ESI/MS. Only the microbiota of one subject produced equol, while most of them showed production of O-desmethylangolensin (O-DMA). Significant inter-subject differences were observed in the metabolism of dihydrodaidzein and dihydrogenistein, while the glucoside isoflavones and their aglycones showed less variability, except for glycitin. Most subjects produced urolithins M-5 and E. Urolithin D was not detected, while uroltithin B was found in half of the individuals analyzed, and urolithins A and C were detected in two and four subjects, respectively. Enterolactone was found in all subjects, while enterodiol only appeared in five. Isoflavone metabolism could be correlated with the metabolism of lignans and ellagitannins. However, the metabolism of ellagitannins and lignans could not be correlated. This the first study where the metabolism of the three groups together of phytoestrogen, isoflavones, lignans, and ellagitannins by gut microbiota is analyzed. Topics: Adult; Aged; Coumarins; Female; Gastrointestinal Microbiome; Humans; Hydrolyzable Tannins; Isoflavones; Lignans; Male; Middle Aged; Phytoestrogens | 2016 |
Urolithins, gut microbiota-derived metabolites of ellagitannins, inhibit LPS-induced inflammation in RAW 264.7 murine macrophages.
Ellagitannin-rich food products and medicinal plant materials were shown to have beneficial effects toward intestinal inflammation. Due to the questionable bioavailability of ellagitannins their gut microbiota metabolites-urolithins have come to be regarded as potential factors responsible for biological activities observed in vivo. The aim of the study was to determine the influence of the three most abundant bioavailable ellagitannin gut microbiota metabolites-urolithins A, B, and C on inflammatory responses in RAW 264.7 murine macrophages, which are involved in the pathogenesis of intestine inflammation.. Urolithins A, B, and C decreased NO production via inhibition of the iNOS protein and mRNA expression. They decreased the expression of IL-1β, TNF-α, and IL-6 mRNA in LPS challenged RAW 264.7 murine macrophages. A clear inhibition of NF-κB p65 nuclear translocation and p50 DNA-binding activity was associated with the observed anti-inflammatory activities of urolithins. Among the tested compounds urolithin A had the strongest anti-inflammatory activity.. The anti-inflammatory effects of urolithins at concentrations that are physiologically relevant for gut tissues (≥40 μM), as revealed in this study, support the data from in vivo studies showing the beneficial effects of ellagitannin-rich products toward intestinal inflammation. Topics: Animals; Anti-Inflammatory Agents; Coumarins; Gastrointestinal Microbiome; Hydrolyzable Tannins; Lipopolysaccharides; Macrophages; Mice; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; RAW 264.7 Cells | 2015 |
Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials.
Ellagitannin-rich plant materials are widely used in traditional medicine as effective, internally used anti-inflammatory agents. Due to the not well-established bioavailability of ellagitannins, the mechanisms of observed therapeutic effects following oral administration still remain unclear. The aim of the study was to evaluate if selected ellagitannin-rich plant materials could be the source of bioavailable gut microbiota metabolites, i.e. urolithins, together with determination of the anti-inflammatory activity of the metabolites produced on the THP-1 cell line derived macrophages model.. The formation of urolithins was determined by ex vivo incubation of human fecal samples with aqueous extracts from selected plant materials. The anti-inflammatory activity study of metabolites was determined on PMA differentiated, IFN-γ and LPS stimulated, human THP-1 cell line-derived macrophages.. The formation of urolithin A, B and C by human gut microbiota was established for aqueous extracts from Filipendula ulmaria (L.) Maxim. herb (Ph. Eur.), Geranium pratense L. herb, Geranium robertianum L. herb, Geum urbanum L. root and rhizome, Lythrum salicaria L. herb (Ph. Eur.), Potentilla anserina L. herb, Potentilla erecta (L.) Raeusch rhizome (Ph. Eur.), Quercus robur L. bark (Ph. Eur.), Rubus idaeus L. leaf, Rubus fruticosus L. and pure ellagitannin vescalagin. Significant inhibition of TNF-α production was determined for all urolithins, while for the most potent urolithin A inhibition was observed at nanomolar concentrations (at 0.625 μM 29.2±6.4% of inhibition). Urolithin C was the only compound inhibiting IL-6 production (at 0.625 μM 13.9±2.2% of inhibition).. The data obtained clearly indicate that in the case of peroral use of the examined ellagitannin-rich plant materials the bioactivity of gut microbiota metabolites, i.e. urolithins, has to be taken under consideration. Topics: Adult; Anti-Inflammatory Agents; Cell Line; Coumarins; Feces; Gastrointestinal Tract; Humans; Hydrolyzable Tannins; Macrophages; Medicine, Traditional; Microbiota; Middle Aged; Plant Extracts; Plants, Medicinal; Tumor Necrosis Factor-alpha | 2014 |
Influence of gut microbiota-derived ellagitannins' metabolites urolithins on pro-inflammatory activities of human neutrophils.
Ellagitannin-rich products exhibit beneficial influence in the case of inflammation-associated diseases. Urolithins, metabolites of ellagitannins produced by gut microbiota, in contrary to high molecular weight hydrophilic parental polyphenols, possess well established bioavailability. Because of the important role of neutrophils in progression of inflammation, the influence of urolithins on their pro-inflammatory functions was tested. Urolithin B at a concentration of 20 µM showed significant inhibition of interleukin 8 and extracellular matrix-degrading enzyme MMP-9 production. It was also significantly active in prevention of cytochalasin A/formyl-met-leu-phenylalanine-triggered selectin CD62L shedding. Urolithin C was the only active compound towards inhibition of elastase release from cytochalasin A/formyl-met-leu-phenylalanine-stimulated neutrophils with 39.0 ± 15.9% inhibition at a concentration of 5 µM. Myeloperoxidase release was inhibited by urolithins A and C (at 20 µM by 46.7 ± 16.1 and 63.8 ± 8.6%, respectively). Urolithin A was the most potent reactive oxygen species release inhibitor both in formyl-met-leu-phenylalanine and 4β-phorbol-12β-myristate-R13-acetate-stimulated neutrophils. At the concentration of 1 µM, it caused reactive oxygen species level decrease by 42.6 ± 26.6 and 53.7 ± 16.0%, respectively. Urolithins can specifically modulate inflammatory functions of neutrophils, and thus could contribute to the beneficial health effects of ellagitannin-rich medicinal plant materials and food products. Topics: Anti-Inflammatory Agents; Cardiovascular Diseases; Cell Survival; Coumarins; Free Radical Scavengers; Gastrointestinal Tract; Humans; Hydrolyzable Tannins; Inflammation; Microbiota; Neutrophils; Pancreatic Elastase; Reactive Oxygen Species | 2014 |