urb602 and anandamide

urb602 has been researched along with anandamide* in 9 studies

Other Studies

9 other study(ies) available for urb602 and anandamide

ArticleYear
COX-2 Inhibition Antagonizes Intra-Accumbens 2-Arachidonoylglycerol-Mediated Reduction in Ethanol Self-Administration in Rats.
    Alcoholism, clinical and experimental research, 2020, Volume: 44, Issue:11

    Ethanol (EtOH) self-administration is particularly sensitive to the modulation of CB. In order to further explore this hypothesis, we analyzed the alterations in operant EtOH self-administration induced by intra-NAc shell infusions of 2-AG itself, the CB. Surprisingly, self-administration of 10% EtOH was dose-dependently reduced by either intra-NAc shell SR141716A or 2-AG infusions. Similar effects were found by intra-NAc shell infusions of URB602, suggesting again a role for accumbal 2-AG on the modulation of EtOH intake. Intra-NAc shell anandamide did not alter EtOH self-administration, pointing to a specific role for 2-AG in the modulation of EtOH self-administration. Finally, the inhibitory effect of intra-NAc shell 2-AG on EtOH intake was significantly reversed by pretreatment with nimesulide, suggesting that oxidative metabolites of 2-AG might mediate these inhibitory effects on operant self-administration.. We propose that 2-AG signaling in the NAc exerts an inhibitory influence on EtOH consumption through a non-CB1 receptor mechanism involving the COX-2 pathway.

    Topics: Alcohol Drinking; Animals; Arachidonic Acids; Biphenyl Compounds; Cyclooxygenase 2 Inhibitors; Dose-Response Relationship, Drug; Endocannabinoids; Glycerides; Male; Nucleus Accumbens; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Self Administration; Sulfonamides

2020
2-Arachidonoylglycerol endocannabinoid signaling coupled to metabotropic glutamate receptor type-5 modulates anxiety-like behavior in the rat ventromedial prefrontal cortex.
    Journal of psychopharmacology (Oxford, England), 2017, Volume: 31, Issue:6

    2-Arachidonoylglycerol and anandamide are the main endocannabinoids, which act through cannabinoid type-1 and type-2 receptors. Among its many functions, anandamide modulates anxiety-like behaviors in the ventromedial prefrontal cortex. The role of 2-arachidonoylglycerol in this region, however, has remained unclear. Here, we verified whether intra- ventromedial prefrontal cortex injection of 2-arachidonoylglycerol or URB602, a monoacylglycerol lipase inhibitor (responsible for 2-arachidonoylglycerol hydrolysis), induce anxiolytic-like effects in Wistar rats. Since activation of metabotropic glutamate receptor type 5 promotes diacylglycerol lipase-α-mediated 2-arachidonoylglycerol synthesis, we also verified if the blockade of this receptor impairs the anxiolytic-like effect induced by URB 602. 2-Arachidonoylglycerol reduced anxiety-like response in rats exposed to the Elevated Plus Maze test, an effect mimicked by URB602. Cannabinoid type-1 and type-2 receptor antagonists prevented these effects. The pre-treatment with an ineffective dose of MPEP, a metabotropic glutamate receptor type 5 antagonist, also attenuated the anxiolytic-like effect of URB602. Moreover, immunofluorescence microscopy revealed co-expression of metabotropic glutamate receptor type 5 and diacylglycerol lipase-α in several neurons in slices from the ventromedial prefrontal cortex. Altogether, our results implicate 2-arachidonoylglycerol and both cannabinoid receptors on anxiety-related behaviors mediated by ventromedial prefrontal cortex. Further, these data support a role for the coupling between metabotropic glutamate receptor type 5 activation and 2-arachidonoylglycerol signalling as a mechanism modulating aversive responses.

    Topics: Animals; Anxiety; Arachidonic Acids; Biphenyl Compounds; Cannabinoid Receptor Antagonists; Endocannabinoids; Glycerides; Male; Polyunsaturated Alkamides; Prefrontal Cortex; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptor, Metabotropic Glutamate 5; Signal Transduction

2017
Peripheral antinociceptive effects of inhibitors of monoacylglycerol lipase in a rat model of inflammatory pain.
    British journal of pharmacology, 2011, Volume: 163, Issue:7

    BACKGROUND AND PURPOSE The endocannabinoid 2-arachidonoylglycerol (2-AG) is degraded primarily by monoacylglycerol lipase (MGL). We compared peripheral antinociceptive effects of JZL184, a novel irreversible MGL inhibitor, with the reversible MGL-preferring inhibitor URB602 and exogenous 2-AG in rats. EXPERIMENTAL APPROACH Nociception in the formalin test was assessed in groups receiving dorsal paw injections of vehicle, JZL184 (0.001-300 µg), URB602 (0.001-600 µg), 2-AG (ED(50)), 2-AG + JZL184 (at their ED(50)), 2-AG + URB602 (at their ED(50)), AM251 (80 µg), AM251 + JZL184 (10 µg), AM630 (25 µg) or AM630 + JZL184 (10 µg). Effects of MGL inhibitors on endocannabinoid accumulation and on activities of endocannabinoid-metabolizing enzymes were assessed. KEY RESULTS Intra-paw administration of JZL184, URB602 and 2-AG suppressed early and late phases of formalin pain. JZL184 and URB602 acted through a common mechanism. JZL184 (ED(50) Phase 1: 0.06 ± 0.028; Phase 2: 0.03 ± 0.011 µg) produced greater antinociception than URB602 (ED(50) Phase 1: 120 ± 51.3; Phase 2: 66 ± 23.9 µg) or 2-AG. Both MGL inhibitors produced additive antinociceptive effects when combined with 2-AG. Antinociceptive effects of JZL184, like those of URB602, were blocked by cannabinoid receptor 1 (CB(1)) and cannabinoid receptor 2 (CB(2)) antagonists. JZL184 suppressed MGL but not fatty-acid amide hydrolase or N-arachidonoyl-phosphatidylethanolamine phospholipase D activities ex vivo. URB602 increased hind paw 2-AG without altering anandamide levels. CONCLUSIONS AND IMPLICATIONS MGL inhibitors suppressed formalin-induced pain through peripheral CB(1) and CB(2) receptor mechanisms. MGL inhibition increased paw skin 2-AG accumulation to mediate these effects. MGL represents a target for the treatment of inflammatory pain.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzodioxoles; Biphenyl Compounds; Cannabinoid Receptor Modulators; Drug Interactions; Drug Therapy, Combination; Endocannabinoids; Glycerides; Male; Monoacylglycerol Lipases; Pain; Pain Measurement; Phospholipase D; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2011
Does the hydrolysis of 2-arachidonoylglycerol regulate its cellular uptake?
    Pharmacological research, 2008, Volume: 58, Issue:1

    Very little is known about the processes regulating the cellular uptake of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG). In the present study, we investigated whether inhibition of 2-AG hydrolysis reduced its uptake, i.e. whether this compound behaves in a manner analogous to the related endocannabinoid anandamide. The selective fatty acid amide hydrolase inhibitor URB597 (3'-(aminocarbamoyl)[1,1'-biphenyl]-3-yl)-cyclohexylcarbamate) completely blocked the hydrolysis of anandamide and reduced its uptake by about half in RBL2H3 basophilic leukaemia cells. In contrast, in these cells, in PC3 and R3327AT-1 prostate cancer cells and in Neuro-2a neuroblastoma cells, the compound had more modest effects upon the hydrolysis of 2-AG and did not affect its cellular uptake at all, indicating that in these cells fatty acid amide hydrolase does not regulate the uptake of 2-AG. The serine hydrolase inhibitor methylarachidonoyl fluoronophosphonate behaved like URB597 with respect to anandamide uptake by RBL2H3 and Neuro-2a cells, and inhibited the hydrolysis of 2-AG with IC50 values of 0.014, 0.052, 0.41 and approximately 1 microM for RBL2H3, PC3, AT-1 and Neuro-2a cells, respectively. MAFP (1 microM) did not significantly reduce the uptake of 2-AG by RBL2H3, PC3 and AT-1 cells but did reduce the uptake of this endocannabinoid by Neuro-2a cells. Arachidonoyl trifluoromethyl ketone and URB602 ([1,1'-biphenyl]-3-yl-carbamic acid, cyclohexyl ester) reduced the uptake of 2-AG by both RBL2H3 and Neuro-2a cells, but at the high concentrations needed, the compound also blocked the retention of these ligands by wells. It is concluded that unlike the situation for anandamide, hydrolysis of 2-AG does not regulate its cellular uptake in RBL2H3, AT-1 and PC3 cells, but may gate the uptake in Neuro-2a cells.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Biphenyl Compounds; Cannabinoid Receptor Modulators; Carbamates; Cell Line, Tumor; Endocannabinoids; Glycerides; Humans; Hydrolysis; Polyunsaturated Alkamides

2008
URB602 inhibits monoacylglycerol lipase and selectively blocks 2-arachidonoylglycerol degradation in intact brain slices.
    Chemistry & biology, 2007, Volume: 14, Issue:12

    The N-aryl carbamate URB602 (biphenyl-3-ylcarbamic acid cyclohexyl ester) is an inhibitor of monoacylglycerol lipase (MGL), a serine hydrolase involved in the biological deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). Here, we investigated the mechanism by which URB602 inhibits purified recombinant rat MGL by using a combination of biochemical and structure-activity relationship (SAR) approaches. We found that URB602 weakly inhibits recombinant MGL (IC(50) = 223 +/- 63 microM) through a rapid and noncompetitive mechanism. Dialysis experiments and SAR analyses suggest that URB602 acts through a partially reversible mechanism rather than by irreversible carbamoylation of MGL. Finally, URB602 (100 microM) elevates 2-AG levels in hippocampal slice cultures without affecting levels of other endocannabinoid-related substances. Thus, URB602 may provide a useful tool by which to investigate the physiological roles of 2-AG and explore the potential interest of MGL as a therapeutic target.

    Topics: Amides; Animals; Arachidonic Acids; Biphenyl Compounds; Brain; Catalysis; Cerebellum; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; HeLa Cells; Hippocampus; Humans; Kinetics; Male; Monoacylglycerol Lipases; Organophosphonates; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Recombinant Proteins; Structure-Activity Relationship; Transfection

2007
Lack of selectivity of URB602 for 2-oleoylglycerol compared to anandamide hydrolysis in vitro.
    British journal of pharmacology, 2007, Volume: 150, Issue:2

    Two compounds, URB602 and URB754, have been reported in the literature to be selective inhibitors of monoacylglycerol lipase, although a recent study has questioned their ability to prevent 2-arachidonoyl hydrolysis by brain homogenates and cerebellar membranes. In the present study, the ability of these compounds to inhibit monoacylglycerol lipase and fatty acid amide hydrolase has been reinvestigated.. Homogenates and cell lines were incubated with test compounds and, thereafter, with either [(3)H]-2-oleoylglycerol or [(3)H]-anandamide. Labelled reaction products were separated from substrate using chloroform: methanol extraction.. In cytosolic fractions from rat brain, URB602 and URB754 inhibited the hydrolysis of 2-oleoylglycerol with IC(50) values of 25 and 48 microM, respectively. Anandamide hydrolysis by brain membranes was not sensitive to URB754, but was inhibited by URB602 (IC(50) value 17 microM). Hydrolysis of 2-oleoylglycerol by human recombinant monoacylglycerol lipase was sensitive to URB602, but not URB754. The lack of selectivity of URB602 for 2-oleoylglycerol compared to anandamide hydrolysis was also observed for intact RBL2H3 basophilic leukaemia cells. C6 glioma expressed mRNA for monoacylglycerol lipase, and hydrolyzed 2-oleoylglycerol in a manner sensitive to inhibition by methyl arachidonoyl fluorophosphonate but not URB754 or URB597. MC3T3-E1 mouse osteoblastic cells, which did not express mRNA for monoacylglycerol lipase, hydrolyzed 2-oleoylglycerol in the presence of URB597, but the hydrolysis was less sensitive to methyl arachidonoyl fluorophosphonate than for C6 cells.. The data demonstrate that the compounds URB602 and URB754 do not behave as selective and/or potent inhibitors of monoacylglycerol lipase.

    Topics: Amidohydrolases; Aniline Compounds; Animals; Arachidonic Acids; Benzoxazines; Biphenyl Compounds; Cell Line, Tumor; Cells, Cultured; Cerebellum; Cytosol; Endocannabinoids; Glycerides; Humans; Hydrolysis; In Vitro Techniques; Male; Membranes; Mice; Monoacylglycerol Lipases; Polyunsaturated Alkamides; Rats; Rats, Wistar; Recombinant Proteins

2007
Fatty pain cures.
    Chemistry & biology, 2007, Volume: 14, Issue:12

    In this issue, Alvin King, Daniele Piomelli, and colleagues publish another interesting paper on inhibition of monoacylglycerol lipase (MGL). MGL is a hot target for antinociceptive agents, being the chief degrading enzyme of the endocannabinoid 2-arachidonoylglycerol.

    Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Biphenyl Compounds; Brain; Cannabinoid Receptor Agonists; Cannabinoid Receptor Modulators; Endocannabinoids; Enzyme Inhibitors; Glycerides; Humans; Monoacylglycerol Lipases; Organophosphonates; Pain; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid

2007
An endocannabinoid mechanism for stress-induced analgesia.
    Nature, 2005, Jun-23, Volume: 435, Issue:7045

    Acute stress suppresses pain by activating brain pathways that engage opioid or non-opioid mechanisms. Here we show that an opioid-independent form of this phenomenon, termed stress-induced analgesia, is mediated by the release of endogenous marijuana-like (cannabinoid) compounds in the brain. Blockade of cannabinoid CB(1) receptors in the periaqueductal grey matter of the midbrain prevents non-opioid stress-induced analgesia. In this region, stress elicits the rapid formation of two endogenous cannabinoids, the lipids 2-arachidonoylglycerol (2-AG) and anandamide. A newly developed inhibitor of the 2-AG-deactivating enzyme, monoacylglycerol lipase, selectively increases 2-AG concentrations and, when injected into the periaqueductal grey matter, enhances stress-induced analgesia in a CB1-dependent manner. Inhibitors of the anandamide-deactivating enzyme fatty-acid amide hydrolase, which selectively elevate anandamide concentrations, exert similar effects. Our results indicate that the coordinated release of 2-AG and anandamide in the periaqueductal grey matter might mediate opioid-independent stress-induced analgesia. These studies also identify monoacylglycerol lipase as a previously unrecognized therapeutic target.

    Topics: Analgesia; Animals; Arachidonic Acids; Biological Transport; Biphenyl Compounds; Cannabinoid Receptor Modulators; Endocannabinoids; Glycerides; Hydrolysis; In Vitro Techniques; Male; Mesencephalon; Monoacylglycerol Lipases; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptor, Cannabinoid, CB1; Stress, Physiological

2005
Design, synthesis, and structure-activity relationships of alkylcarbamic acid aryl esters, a new class of fatty acid amide hydrolase inhibitors.
    Journal of medicinal chemistry, 2003, Jun-05, Volume: 46, Issue:12

    Fatty acid amide hydrolase (FAAH), an intracellular serine hydrolase enzyme, participates in the deactivation of fatty acid ethanolamides such as the endogenous cannabinoid anandamide, the intestinal satiety factor oleoylethanolamide, and the peripheral analgesic and anti-inflammatory factor palmitoylethanolamide. In the present study, we report on the design, synthesis, and structure-activity relationships (SAR) of a novel class of potent, selective, and systemically active inhibitors of FAAH activity, which we have recently shown to exert potent anxiolytic-like effects in rats. These compounds are characterized by a carbamic template substituted with alkyl or aryl groups at their O- and N-termini. Most compounds inhibit FAAH, but not several other serine hydrolases, with potencies that depend on the size and shape of the substituents. Initial SAR investigations suggested that the requirements for optimal potency are a lipophilic N-alkyl substituent (such as n-butyl or cyclohexyl) and a bent O-aryl substituent. Furthermore, the carbamic group is essential for activity. A 3D-QSAR analysis on the alkylcarbamic acid aryl esters showed that the size and shape of the O-aryl moiety are correlated with FAAH inhibitory potency. A CoMSIA model was constructed, indicating that whereas the steric occupation of an area corresponding to the meta position of an O-phenyl ring improves potency, a region of low steric tolerance on the enzyme active site exists corresponding to the para position of the same ring. The bent shape of the O-aryl moieties that best fit the enzyme surface closely resembles the folded conformations observed in the complexes of unsaturated fatty acids with different proteins. URB524 (N-cyclohexylcarbamic acid biphenyl-3-yl ester, 9g) is the most potent compound of the series (IC(50) = 63 nM) and was therefore selected for further optimization.

    Topics: Amidohydrolases; Arachidonic Acids; Biological Transport; Biphenyl Compounds; Brain; Carbamates; Drug Design; Endocannabinoids; Enzyme Inhibitors; Esters; Humans; In Vitro Techniques; Models, Molecular; Molecular Conformation; Polyunsaturated Alkamides; Quantitative Structure-Activity Relationship; Tumor Cells, Cultured

2003